Chapter 3
Transport Layer

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students,
readers). They’rein PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a lot of work on our part.
Inreturn for use, we only ask the following:

= Ifyouusethese slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

= Ifyou postany slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.
Thanks and enjoy! JFK/KWR

All material copyright 1996-2020
J.F Kurose and K.W. Ross, AllRights Reserved

James F. Kurose | Keith W. Ross

NETWORKING

ATOP-DOWN APPROACH

@ Eighth Edition -

— e ——

Y O mw* , v"'

Computer Networking: A
Top-Down Approach

8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Transport Layer: 3-1

Transport layer: overview

Our goal:
" understand principles = learn about Internet transport
behind transport layer layer protocols:
services: * UDP: connectionless transport
* multiplexing, e TCP: connection-oriented reliable
demultiplexing transport
* reliable data transfer * TCP congestion control

 flow control
e congestion control

Transport Layer: 3-2

Transport layer: roadmap

" Transport-layer services

= Multiplexing and demultiplexing
= Connectionless transport: UDP

" Principles of reliable data transfer

= Connection-oriented transport: TCP
" Principles of congestion control
= TCP congestion control

= Evolution of transport-layer
functionality

Transport Layer: 3-3

Transport services and protocols

= provide logical communication
between application processes
running on different hosts

= transport protocols actions in end
systems:
» sender: breaks application messages
into segments, passes to network layer

* receiver: reassembles segments into
messages, passes to application layer

= two transport protocols available to
Internet applications
* TCP, UDP

transport
twor

Transport Layer: 3-4

Transport vs. network layer services and protocols

—— household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

= hosts = houses
= processes = kids

" app messages = letters in
envelopes

1028, WM. EVANS,
HERE was an old woman who lived in a shce,
She had so many children, she didn’t know what to do.
* She gave them some milk and nice butter bread, -
She kissed them all round and put them to bed.

~

Transport Layer: 3-5

Transport vs. network layer services and protocols

" network layer: logical
communication between
hosts

=transport layer: logical
communication between
processes

* relies on, enhances, network
layer services

—— household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

= hosts = houses
= processes = kids

" app messages = letters in
envelopes

Transport Layer: 3-6

Transport Layer Actions

Sender:
= is passed an application- app. msg
layer message
= determines segment T, |app.msg

header fields values
= creates segment

= passes segmentto IP

Transport Layer: 3-7

Transport Layer Actions

C)pp- msg

-,

app. msg

Receiver:
" receives segment from |P
= checks header values

= extracts application-layer
message

= demultiplexes message up
to application via socket

Transport Layer: 3-8

Two principal Internet transport protocols

transport

= TCP: Transmission Control Protocol
* reliable, in-order delivery |
e congestion control
* flow control
* connection setup
= UDP: User Datagram Protocol
* unreliable, unordered delivery
* no-frills extension of “best-effort” IP
= services not available:

* delay guarantees
* bandwidth guarantees

| data link
{ physical

Transport Layer: 3-9

Chapter 3: roadmap

= Multiplexing and demultiplexing

Transport Layer: 3-10

HTTP server

APACHE

HTTP msg

application

e
transport transport
network network
link link
physical physical

Transport Layer: 3-11

HTTP server

APACHE

application

H, HTTP msg Q
transport transport
network network
link link
physical physical

Transport Layer: 3-12

HTTP server

APACHE
[HTTP msg |

application

e
transport HyHe HTTP msg transport
network network

link link
physical physical

Transport Layer: 3-13

HTTP server

APACHE

transport

network

link

physical

<«— |H,H; HTTP msg

application

e

transport

network

link

physical

Transport Layer: 3-14

client,

application

network
link
physical

client,

application

e

transpoft

Transport Layer: 3-15

Multiplexing/demultiplexing

— multiplexing at sender: —— — demultiplexing at receiver: —

handle data from multiple use header info to deliver
sockets, add transport header received segments to correct

(later used for demultiplexing) socket

application

— e —
application application [[I] socket
, Oprocess
nEtWork trar{gport
Ik netiork
, \
‘f physical u

Transport Layer: 3-16

How demultiplexing works

" host receives IP datagrams : 32 bits

e each datagram has source IP
address, destination IP address

e each datagram carries one other header fields
transport-layer segment

e each segment has source,

source port
 S—

dest port #

.70 -
destination port number ap%;iztlon
" host uses IP addresses & port (payload)

numbers to direct segment to
appropriate socket TCP/UDP segment format

Transport Layer: 3-17

Connectionless demultiplexing

Recall: when receiving host receives
= when creating socket, must U?P;eimjntf . oy
specify host-local port #: gegrcn e anonPort

 directs UDP segment to
socket with that port #

!

specify IP/UDP datagra.ms with same dest.
. . port #, but different source IP
dest!nat!on IP-address addresses and/or source port

* destination port # numbers will be directed to same

socket at receiving host

DatagramSocket mySogketl
= new DatagramSocHKet (12534) ;

" when creating datagram to
send into UDP socket, must

Transport Layer: 3-18

Connectionless demultiplexing: an example

DatagramSocket
serverSocket = new
DatagramSocket
DatagramSocket mySocket2 = DatagramSocket mySocketl =
new DatagramSocket (6428) ; new DatagramSocket (5775) ;

(9157) ;

application

|

[‘f physical
‘%@

application @ application
ry
A tTransport o4y al
tramgpor Network trangport
nefwork link netwprk
ink phisical link
physical \
] . =
source port: 6428 source port: ?
« dest port: 9157 : dest port: ?
> e ¥
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer: 3-19

Connection-oriented demultiplexing

= TCP socket identified by
4-tuple:
e source IP address
* source port number
* dest IP address
e dest port number

= demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

" server may support many
simultaneous TCP sockets:

e each socket identified by its
own 4-tuple

* each socket associated with
a different connecting client

Transport Layer: 3-20

Connection-oriented demultiplexing: example

-

APACHE

HTTP SERVER
application - - - application
A nsport
tranppor Hetwlork i g nspmf_
netyork lidk network
lihk bhysical link
q phykical E server:|P physical E
e address B o
“+]
host: IP source IP,port: B,80 host: IP
address A dest IP port A,9157 775 address C

Three segments, all destined to IP address: B,

lr"-
dest IR port: B,80

dest port: 80 are demultiplexed to different sockets

source [Bpeskl 915/

dest Ig,port: B,80

Transport Layer: 3-21

Summary

= Multiplexing, demultiplexing: based on segment, datagram
header field values

= UDP: demultiplexing using destination port number (only)

" TCP: demultiplexing using 4-tuple: source and destination IP
addresses, and port numbers

= Multiplexing/demultiplexing happen at all layers

Transport Layer: 3-22

Chapter 3: roadmap

= Connectionless transport: UDP

Transport Layer: 3-23

UDP: User Datagram Protocol

= “no frills,” “bare bones”
Internet transport protocol

= “best effort” service, UDP
segments may be:

* |ost
* delivered out-of-order to app

m connectionless:

* no handshaking between UDP
sender, receiver

e each UDP segment handled
independently of others

- Why is there a UDP?

no connection

establishment (which can

add RTT delay)

simple: no connection state

at sender, receiver
small header size
no congestion control

= UDP can blast away as fast as

desired!

= can function in the face of

congestion

Transport Layer: 3-24

UDP: User Datagram Protocol

= UDP use:
" streaming multimedia apps (loss tolerant, rate sensitive)
= DNS
= SNMP
= HTTP/3

= if reliable transfer needed over UDP (e.g., HTTP/3):

= add needed reliability at application layer
= add congestion control at application layer

Transport Layer: 3-25

UDP: User Datagram Protocol [RFC 768]

INTERNET STANDARD

RFC 768 J. Postel
ISI
28 August 1980

User Datagram Protocol

Introduction

This User Datagram Protocol (UDP) 1is defined to make available a
datagram mode of packet-switched computer communication in the
environment of an interconnected set of computer networks. This
protocol assumes that the Internet Protocol (IP) [1l] is used as the
underlying protocol.

This protocol provides a procedure for application programs to send
messages to other programs with a minimum of protocol mechanism. The
protocol 1is transaction oriented, and delivery and duplicate protection
are not guaranteed. Applications requiring ordered reliable delivery of
streams of data should use the Transmission Control Protocol (TCP) [2].

Format

0 7 8 15 16 23 24 31

R R S R —— +

Source Destination
Port Port

S R A S —— +
Length | Checksum |

S S A S —— +

data octets ...

T - Transport Layer: 3-26

UDP: Transport Layer Actions

SNMP client

application

[]

| SIS

transport
(UDP)

network (IP)
link
physical

SNMP server

application

transport
(UDP)

network (IP)

link

physical

/

Transport Layer: 3-27

UDP: Transport Layer Actions

SNMP server
UDP sender actions:

= is passed an application- SNMP msg |
layer message
= determines UDP segment UDP, [SNMP msg

header fields values
= creates UDP segment

= passes segmentto IP

Transport Layer: 3-28

UDP: Transport Layer Actions

-

SNMP client

$NMP msg

UDP,

SNMP msg

\

UDP receiver actions:

" receives segment from |P

= checks UDP checksum
header value
= extracts application-layer

message
= demultiplexes message up

to application via socket

SNMP server

/

Transport Layer: 3-29

UDP segment header

« 32 bits >

length < |) checksum

application
data

Nength, in bytes of
UDP segment,

including header

\ data to/from

UDP segment format application layer

Transport Layer: 3-30

UDP checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

15t number 2" number sum

Transmitted: 5 6 11

D 4

Received: 4 6 11
\ v J —
receiver-computed sender-computed
checksum checksum (as received)

O

Transport Layer: 3-31

UDP checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

sender: receiver:

" treat contents of UDP = compute checksum of received
segment (including UDP header segment

fields and IP addresses) as .
sequence of 16-bit integers » check if computed checksum equals

» checksum: addition (one’s checksum field value:
complement sum) of segment * Not equal - error detected
content * Equal - no error detected. But maybe

. ?
= checksum value out into errors nhonetheless? More later

UDP checksum field

Transport Layer: 3-32

Internet checksum: an example

example: add two 16-bit integers

111001100

1100110
11 01010101010101

wraparound@1011101110111011

sum 1 011101110111 100
checksum 0100010001 000011

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http:/gaia.cs.umass.edu/kurose_ross/interactive/
Transport Layer: 3-33

Internet checksum: weak protection!

example: add two 16-bit integers

= O
o

1110011001100 110
1101010101010 10 1

wraparound 1)1 0011 101110111011 Even though
> numbers have

sum 1 011101110111100 [changed(bit

flips), no change
checksum 0100010001000011 in checksum!

Transport Layer: 3-34

Summary: UDP

" “no frills” protocol:

* segments may be lost, delivered out of order

e best effort service: “send and hope for the best”
= UDP has its plusses:

* no setup/handshaking needed (no RTT incurred)
e can function when network service is compromised
* helps with reliability (checksum)

" build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

Chapter 3: roadmap

" Principles of reliable data transfer

Transport Layer: 3-36

Chapter 3: roadmap

= Connection-oriented transport: TCP
e segment structure
* reliable data transfer
* flow control
* connection management

Transport Layer: 3-37

TCP: overview RFCs: 7931122 2018, 5681, 7323

" point-to-point: = cumulative ACKs
* one sender, one receiver = pipelining:
" reliable, in-order byte * TCP congestion and flow control
steam: set window size
* no “message boundaries” = connection-oriented:
= full duplex data: handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

* bi-directional data flow in
same connection

* MSS: maximum segment size ® flow controlled:
e sender will not overwhelm receiver

Transport Layer: 3-38

TCP segment structure

< 32 hits >
source port # dest port # segment seq #: counting
ACK: seq # of next expected sequence number bytes of data into bytestream

byte; A bit: this is an ACK |
Y \%knowledgement number (not segments)

length (of TCP header) o aclE[Al |R[s]F| receive window flow control: # bytes
Internet checksum //check m receiver willing to accept
tions (variable length
C, E: congestion notification / (gth)

TCP options //

application data sent by
RST, SYN, FIN: connection / dat !
management ata application into

(variable length) TCP socket

Transport Layer: 3-39

TCP sequence numbers, ACKs

outgoing segment from sender

Sequence numbers:

* byte stream “number” of
first byte in segment’s data

Acknowledgements:

* seq # of next byte expected
from other side

e cumulative ACK

Q: how receiver handles out-of-
order segments
e A: TCP spec doesn’t say, - up
to implementor

source port #

sequence number

acknowledgement number

dest port #

| rwnd

checksum

urg pointer

window siz

N

sender sequence number space

sent

ACKed

sent not- usable not
yet ACKed but not usable
(in-flight) yet sent

outgoing segment from receiver
dest port #

source port #

sequence number
acknowledgement number
A rwnd

checksum

urg pointer

Transport Layer: 3-40

TCP sequence numbers, ACKs

Host Aq &HOSt B

User types 'C’ —
Seg \CK=79, data= ‘C’ :
dk host ACKs receipt
of ‘C’, echoes back ‘C’

Seo CK
host ACKs receipt

of echoed ‘C’ \S;qﬂB\AC

simple telnet scenario

Transport Layer: 3-41

TCP round trip time, timeout

Q: how to set TCP timeout Q: how to estimate RTT?
value? " SampleRTT : measured time
= longer than RTT, but RTT varies! from segment transmission until

ACK receipt

* ignore retransmissions

" SampleRTT will vary, want
estimated RTT “smoother”
* average several recent

measurements, not just current
SampleRTT

" too short: premature timeout,
unnecessary retransmissions

" too long: slow reaction to
segment loss

Transport Layer: 3-42

TCP round trip time, timeout

EstimatedRTT = (1- a)*EstimatedRTT + o*SampleRTT

exponential weighted moving average (EWMA)
influence of past sample decreases exponentially fast

typical value: oo =0.125

RTT (milliseconds)

350 -

300

250

200

150

100

RTT: gaia.cs.umass.eduto fantasia.eurecom.fr,

i r N\Am

€ sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconds)
Transport Layer: 3-43

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
e large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

eStimaIted RTT “Safetylmargin”

" DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

DevRTT = (1-B) *DevRTT + [*|SampleRTT-EstimatedRTT|

(typically, B =0.25)

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ . L -
ransport Layer: 3-

TCP Sender (simplified)

event: data received from event: timeout
application " retransmit segment that

. caused timeout
" create segment with seq # . restart timer

" seq #is byte-stream number

of first data byte in segment event: ACK received

= start timer if not already :
running if ACK acknowledges

reviously unACKed segments
e think of timer as for oldest P Y , 5
unACKed segment e update what is known to be

. ACKed
e expiration interval:

TimeOutInterval e start timer if there are still
unACKed segments

Transport Layer: 3-45

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action
arrival of in-order segment with delayed ACK: Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-50

TCP: retransmission scenarios

I
O
n
~—t
>

['F

l¢—— timeout —*

\
Seq=92, 8 bytes of data

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Host
\ull

-
ACK=100

B

SendBase=92 ~—

—— timeout ——

SendBase=100
SendBase=120

SendBase=120

Seq=92, 8 bytes of data
\

Seq=100, 20 bytes of dat,

ACKzlo/

ACK=120

/

Host A Host B
w ﬁ

send cumulative
ACK for 120

premature timeout

Transport Layer: 3-47

TCP: retransmission scenarios

Host A Host B
\
Seq=92, 8 bytes of data
\

Seq=100, 20 bytes%fd{

ACK=100
X
ACK=120

A\

Seq=120, 15 bytes of data

cumulative ACK covers
for earlier lost ACK

Transport Layer: 3-48

TCP fast retransmit

) Host A Host B
— TCP fast retransmit V./ \‘y
. . oy . % =
if sender receives 3 additional -
(g 3 x= Seg=
ACKs for same data (“triple qu 22,8 bytes of gy

duplicate ACKs”), resend unACKed w
segment with smallest seq #
= |ikely that unACKed segment lost,

0b esofdata X
| . 100 ‘4
so don’t wait for timeout poKa = =

Pgn(s\oo
P&“(;\OO

L7, 100
Receipt of three duplicate ACKs pot

indicates 3 segments received Seq=100, 20 bytes of data
after a missing segment — lost

segment is likely. So retransmit!

timeout

\

~

Transport Layer: 3-49

Chapter 3: roadmap

= Connection-oriented transport: TCP

* flow control
* connection management

Transport Layer: 3-50

TCP flow control

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Application removing
data from TCP socket
buffers

Network layer

delivering IP datagram

payloadinto TCP
socket buffers

application
proces

TCP socket
receiver buffers

from sender |

receiver protocol stack

Transport Layer: 3-51

TCP flow control

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Application removing
data from TCP socket
buffers

Network layer

delivering IP datagram

payloadinto TCP
socket buffers

application

TCP socket
receiver buffers

from sender |

receiver protocol stack

Transport Layer: 3-52

TCP flow control

Q: What happens if network Apolicati .
— _ pplication removing
layer delivers data faster than data from TCP socket
application layer removes buters
data from socket buffers?

receive window

flow control: # bytes
receiver willing to accept

application
proces

TCP socket
receiver buffers

from sender |

receiver protocol stack

Transport Layer: 3-53

TCP flow control

application
proces

Q: What happens if network

Application removing

layer delivers data faster than data from TCP socket

application layer removes buffers ot
data from socket buffers? receiver buffers
—flow control

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

from sender |

receiver protocol stack

Transport Layer: 3-54

TCP flow control

= TCP receiver “advertises” free buffer
space in rwnd field in TCP header
e RevBuffer size setvia socket
options (typical default is 4096 bytes)

* many operating systems autoadjust
RcvBuffer

= sender limits amount of unACKed
(“in-flight”) data to received rwnd

= guarantees receive buffer will not
overflow

to application process

RcvBuffer buffered data

T

rwnd

_L free buffer space

I

TCP segment payloads

TCP receiver-side buffering

Transport Layer: 3-55

TCP flow control

= TCP receiver “advertises” free buffer
space in rwnd field in TCP header
e RevBuffer size setvia socket
options (typical default is 4096 bytes)

* many operating systems autoadjust
RcvBuffer

= sender limits amount of unACKed
(“in-flight”) data to received rwnd

= guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

N\

\ . -
receive window

TCP segment format

Transport Layer: 3-56

TCP connection management

before exchanging data, sender/receiver “handshake”:
= agree to establish connection (each knowing the other willing to establish connection)
" agree on connection parameters (e.g., starting seq #s)

Socket clientSocket
newSocket ("hostname" , "port number") ;

——— (0]

connection state: ESTAB
connection variables:
seq # client-to-server

application

server-to-client

rcvBuffer size
at server,client

network

application
[T 1 1]

—_—

.
connection state: ESTAB
connection Variables:

seq # client-to-server

server-to-client
rcvBuffer Size
at server,client

network

Socket connectionSocket =
welcomeSocket.accept() ;

Transport Layer: 3-57

Agreeing to establish a connection

2-way handshake:

B rd
et S td
% ESTAB

OK
ESTAB &

3

choose x \req_conn(x_)\b.
—® ESTAB

ESTAR &— acc_conn(x)

Q: will 2-way handshake always

work in network?
" variable delays
» retransmitted messages (e.g.

req_conn(x)) due to message loss

" message reordering
= can’t “see” other side

Transport Layer: 3-58

TCP 3-way handshake

Server state

serverSocket = socket (AF INET, SOCK STREAM)

C||ent State serverSocket.bind ((‘' ,serverPort))
serverSocket.listen (1)
clientSocket = socket (AF_INET, SOCK_STREAM) connectionSocket, addr = serverSocket.accept ()
LISTEN ™,
clientSocket.connect ((serverName, serverPort)) . E LISTEN
choose init seq num, x
send TCP SYN msg
SYNSENT SYNbit=1, Seq=x
choose init seq num, y
send TCP SYNACK
/ msg, acking SYN SYN RCVD
SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1
v received SYNACK(x)
ESTAB indicates server is live; /
send ACK for SYNACK; |~
this segment may contain | ACKbit=1, ACKnum=y+1
client-to-server data ~ received ACK(y)
indicates client is live v
ESTAB

Transport Layer: 3-59

A human 3-way handshake protocol

~

. . g

3. Climbin E
[] L]

-
o P R T A N
z S8 ALY Y
i A L o
/ SERINC IR o

TR T
- e i e \u-..\ -“"k‘..
. 2 XA

AR x o
e -
W N b
. . e
Y A
- \-ﬂ'\v g
3

Transport Layer: 3-60

Closing a TCP connection

= client, server each close their side of connection
* send TCP segment with FIN bit=1

= respond to received FIN with ACK
e on receiving FIN, ACK can be combined with own FIN

" simultaneous FIN exchanges can be handled

Transport Layer: 3-61

Chapter 3: roadmap

" Principles of congestion control

Transport Layer: 3-62

Principles of congestion control

Congestion:

" informally: “too many sources sending too much data too fast for
network to handle”

" manifestations:
* long delays (queueing in router buffers)
 packet loss (buffer overflow at routers)

A o %Y
congestion control:

too many senders,
sending too fast

= different from flow control!

= 3 top-10 problem!

| flow control: one sender
too fast for one receiver

Transport Layer: 3-63

Causes/costs of congestion: insights

= throughput can never exceed capacity

" delay increases as capacity approached J

R/2 '
7 I, R2

delay

= |oss/retransmission decreases effective
throughput

ughpu

thro

" un-needed duplicates further decreases
effective throughput :

R/2 _|
I '

= upstream transmission capacity / buffering .
wasted for packets lost downstream - A

Transport Layer: 3-64

Approaches towards congestion control

End-end congestion control:

" no explicit feedback from
network

" congestion inferred from
observed loss, delay

= approach taken by TCP

5‘7

ACKs

ACKs

Transport Layer: 3-65

Approaches towards congestion control

Network-assisted congestion
control:

11— explicit congestion info

" routers provide direct feedback
to sending/receiving hosts with =
flows passing through congested
router

ACKs ACKs

" may indicate congestion level or
explicitly set sending rate

= TCP ECN, ATM, DECbit protocols

Transport Layer: 3-66

Chapter 3: roadmap

= TCP congestion control

Transport Layer: 3-67

TCP congestion control: AIMD

" gpproach: senders can increase sending rate until packet loss
(congestion) occurs, then decrease sending rate on loss event

- Additive Increase — Multiplicative Decrease —]
increase sending rate by 1 cut sending rate in half at
maximum segment size every each loss event
RTT until loss detected

AIMD sawtooth

behavior: probing
for bandwidth

/
o

TCP sender Sending rate

time Transport Layer: 3-68

TCP AIMD: more

Multiplicative decrease detail: sending rate is

= Cutin half on loss detected by triple duplicate ACK (TCP Reno)

= Cut to 1 MSS (maximum segment size) when loss detected by
timeout (TCP Tahoe)

Why AIMD?

= AIMD - a distributed, asynchronous algorithm — has been
shown to:

e optimize congested flow rates network wide!
* have desirable stability properties

Transport Layer: 3-69

TCP congestion control: details

sender sequence number space

TCP sending behavior:

cwnd
" roughly: send cwnd bytes,
wait RTT for ACKS, then

J send more bytes
last byte
ACKed sent, but not- a"a'lableb”t TCP rate » Sliale bytes/sec

yet ACKed not used RTT

(“in-flight”) — last byte sent

= TCP sender limits transmission: LastByteSent- LastByteAcked < cwnd

= cwnd is dynamically adjusted in response to observed
network congestion (implementing TCP congestion control)

Transport Layer: 3-70

TCP slow start

=" when connection begins,
increase rate exponentially
until first loss event:
* initially cwnd =1 MSS
* double cwnd every RTT

* done by incrementing cwnd
for every ACK received

" summary: initial rate is
slow, but ramps up
exponentially fast

Host A
e/
! - —lesegment |
|_
'
|

Host B

Transport Layer: 3-71

TCP: from slow start to congestion avoidance

Q: when should the exponential
increase switch to linear?

14—
A: when cwnd gets to 1/2 of its . ']
value before timeout. g% 12:_ss_th_rgslj ____________
Implementation: § -
= yariable ssthresh 2_ —TTT—TTT—T—T—T— —

[
5 6 7 8 9 10 11 12 13 14 15
Transmission round

O
[\
w
=N

= on loss event, ssthresh is set to
1/2 of ewnd just before loss event

* Check out the online interactive exercises for more examples: http:/gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer: 3-72

Summary: TCP congestion control

duplicate ACK
dupACKcount++ new ACK

e

A
cwnd =1 MSS
ssthresh = 64 KB

(e C » timeout

ssthresh = cwnd/2
cwnd =1 MSS
dupACKcount=0

retransmit missing segment

dupACKcount ==

ssthresh=cwnd/2
cwnd = ssthresh +3
retransmit missing segment

Svk,”;dﬁ—z
2L ACKLS

cwnd = cwnd+MSS
dupACKcount=0

/>transmit new segment(s), as allowed
cwnd > ssthresh

A
<+~ -
(> %) \ timeout
e <)'ssthresh = cwnd/2
cwnd =1 MSS

dupACKcount = 0
retransmit missing segment

ATy

=

i{e 5'}|
timeoull) New =
CK!
ssthresh = cwnd/2
cwnd =1 New ACK

dupACKcount =0 cwnd = ssthresh
retransmit missing segment dupACKcount=0

v
A

duplicate ACK
cwnd = cwnd + MSS

New
Kl = _new ACK %L(}\C,E]'\v

cwnd = cwnd + MSS , (MSS/cwnd)
dupACKcount=0
transmit new segment(s), as allowed

duplicate ACK
dupACKcount++

dupACKcount ==

ssthresh=cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

transmit new segment(s), as allowed

Transport Layer: 3-73

TCP CUBIC

" |s there a better way than AIMD to “probe” for usable bandwidth?

" |nsight/intuition:
* W__.:sending rate at which congestion loss was detected

max:*

e congestion state of bottleneck link probably (?) hasn’t changed much

» after cutting rate/window in half on loss, initially ramp to to W, ., faster, but then
approach W,,, more slowly

Whax classic TCP
== = = = TCP CUBIC - higher
Winax/2 throughputin this

example

Transport Layer: 3-74

TCP CUBIC

= K: point in time when TCP window size will reach W,

e Kitself is tuneable

= increase W as a function of the cube of the distance between current

time and K

* larger increases when further away from K
e smaller increases (cautious) when nearer K

= TCP CUBIC default
In Linux, most
popular TCP for
popular Web
servers

max

TCP
sending
rate

A

_’

- ==
-

TCP CUBIC

time

»

Transport Layer: 3-75

Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
= two bits in IP header (ToS field) marked by network router to indicate congestion
 policy to determine marking chosen by network operator
= congestion indication carried to destination
= destination sets ECE bit on ACK segment to notify sender of congestion
= involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

source TCP ACK segment destination
TCP
- i Yv

Transport Layer: 3-76

TCP fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

d

|

Gg bottleneck

TCP connection 2 router
capacity R

Transport Layer: 3-77

Fairness: must all network apps be “fair”?

Fairness and UDP Fairness, parallel TCP
= multimedia apps often do not connections
use TCP

= application can open multiple

* do not want rate throttled by parallel connections between two

congestion control

= instead use UDP: s
* send audio/video at constant rate, = web browsers do this , e.g., link of
tolerate packet loss rate R with 9 existing connections:
" there is no “Internet police” * new app asks for 1 TCP, gets rate R/10
policing use of congestion * new app asks for 11 TCPs, gets R/2

control

Transport Layer: 3-78

Additional Chapter 3 slides

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegqNum
pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
A if (timer currently not running)

“a - start timer
NextSegNum = InitialSeqNum

SendBase = InitialSegNum

event timeout
retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
[* SendBase-1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer: 3-80

TCP 3-way handshake FSM
S retcomeSoskat accent() 1

A Socket clientSocket =
newSocket ("hostname", "port number") ;

SYN(x)
SYNACK(seq=y,ACKnum=x+1) v SYN(seg=x)

create new socket for communication
back to client
l \

| # ‘ | SYNACK(seq=y,ACKnum=x+1)
ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

<

Transport Layer: 3-81

Closing a TCP connection

client state
ESTAB
clientSocket.close ()
FIN_WAIT_1 can no longer

send butcan
l receive data

FIN WAIT 2 wait for server
T - close
TIMED_WAIT —\
timed wait
for 2*max
segment lifetime
CLOSED l

g

4

/
ACKbit=1; ACKnum=x+1
—

- /
‘/FLNbIt=1, seq=y
\

ACKbit=1; ACKnum=y+1
\

\FINb't 1
it=1, Seq=X\‘

server state

can still
send data

can no longer
send data

ESTAB

CLOSE_WAIT

LAST ACK

v

CLOSED

Transport Layer: 3-82

