
Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 3
Transport Layer

A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a lot of work on our part.
In return for use, we only ask the following:

▪ If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

▪ If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2020
J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer: 3-1

Transport layer: overview

Our goal:

▪ understand principles
behind transport layer
services:
• multiplexing,

demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ learn about Internet transport
layer protocols:
• UDP: connectionless transport

• TCP: connection-oriented reliable
transport

• TCP congestion control

Transport Layer: 3-2

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-3

Transport services and protocols

▪ provide logical communication
between application processes
running on different hosts

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪ transport protocols actions in end
systems:
• sender: breaks application messages

into segments, passes to network layer

• receiver: reassembles segments into
messages, passes to application layer

▪ two transport protocols available to
Internet applications
• TCP, UDP

Transport Layer: 3-4

Transport vs. network layer services and protocols

household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

▪ hosts = houses
▪ processes = kids
▪ app messages = letters in

envelopes
▪ transport protocol = Ann and Bill

who demux to in-house siblings
▪ network-layer protocol = postal

service

Transport Layer: 3-5

Transport vs. network layer services and protocols

▪network layer: logical
communication between
hosts

▪transport layer: logical
communication between
processes
• relies on, enhances, network

layer services

household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

▪ hosts = houses
▪ processes = kids
▪ app messages = letters in

envelopes
▪ transport protocol = Ann and Bill

who demux to in-house siblings
▪ network-layer protocol = postal

service

Transport Layer: 3-6

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

Sender:
app. msg▪ is passed an application-

layer message
▪ determines segment

header fields values
▪ creates segment

▪ passes segment to IP

transport
ThTh app. msg

Transport Layer: 3-7

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

transport

Receiver:

app. msg ▪ extracts application-layer
message

▪ checks header values

▪ receives segment from IP

Th app. msg

▪ demultiplexes message up
to application via socket

Transport Layer: 3-8

Two principal Internet transport protocols

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪TCP: Transmission Control Protocol
• reliable, in-order delivery

• congestion control
• flow control
• connection setup

▪UDP: User Datagram Protocol
• unreliable, unordered delivery

• no-frills extension of “best-effort” IP

▪services not available:
• delay guarantees
• bandwidth guarantees

Transport Layer: 3-9

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-10

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client

HTTP msg

Transport Layer: 3-11

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client

HTTP msgHt

HTTP msg

Transport Layer: 3-12

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client

HTTP msgHt

HTTP msgHtHn

HTTP msg

Transport Layer: 3-13

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client

HTTP msgHtHn

Transport Layer: 3-14

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client1 client2

P-client1 P-client2

Transport Layer: 3-15

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

Transport Layer: 3-16

How demultiplexing works

▪ host receives IP datagrams
• each datagram has source IP

address, destination IP address

• each datagram carries one
transport-layer segment

• each segment has source,
destination port number

▪ host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Transport Layer: 3-17

Connectionless demultiplexing

Recall:

▪ when creating socket, must
specify host-local port #:

DatagramSocket mySocket1
= new DatagramSocket(12534);

when receiving host receives
UDP segment:
• checks destination port # in

segment
• directs UDP segment to

socket with that port #

▪ when creating datagram to
send into UDP socket, must
specify
• destination IP address

• destination port #

IP/UDP datagrams with same dest.
port #, but different source IP
addresses and/or source port

numbers will be directed to same
socket at receiving host

Transport Layer: 3-18

Connectionless demultiplexing: an example

DatagramSocket
serverSocket = new
DatagramSocket

(6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket mySocket1 =
new DatagramSocket (5775);

DatagramSocket mySocket2 =
new DatagramSocket

(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

Transport Layer: 3-19

Connection-oriented demultiplexing

▪ TCP socket identified by
4-tuple:
• source IP address

• source port number

• dest IP address

• dest port number

▪ server may support many
simultaneous TCP sockets:
• each socket identified by its

own 4-tuple

• each socket associated with
a different connecting client

▪ demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

Transport Layer: 3-20

Connection-oriented demultiplexing: example

transport

application

physical

link

network

P1
transport

application

physical

link

P4

transport

application

physical

link

network

P2

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP
address B

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

Transport Layer: 3-21

Summary

▪ Multiplexing, demultiplexing: based on segment, datagram
header field values

▪ UDP: demultiplexing using destination port number (only)

▪ TCP: demultiplexing using 4-tuple: source and destination IP
addresses, and port numbers

▪ Multiplexing/demultiplexing happen at all layers

Transport Layer: 3-22

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-23

UDP: User Datagram Protocol

▪ “no frills,” “bare bones”
Internet transport protocol

▪ “best effort” service, UDP
segments may be:
• lost

• delivered out-of-order to app

▪ no connection
establishment (which can
add RTT delay)

▪ simple: no connection state
at sender, receiver

▪ small header size

▪ no congestion control
▪ UDP can blast away as fast as

desired!

▪ can function in the face of
congestion

Why is there a UDP?

▪ connectionless:
• no handshaking between UDP

sender, receiver
• each UDP segment handled

independently of others
Transport Layer: 3-24

UDP: User Datagram Protocol

▪ UDP use:
▪ streaming multimedia apps (loss tolerant, rate sensitive)

▪ DNS

▪ SNMP

▪ HTTP/3

▪ if reliable transfer needed over UDP (e.g., HTTP/3):
▪ add needed reliability at application layer

▪ add congestion control at application layer

Transport Layer: 3-25

UDP: User Datagram Protocol [RFC 768]

Transport Layer: 3-26

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

transport

(UDP)

physical

link

network (IP)

application

Transport Layer: 3-27

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP sender actions:
SNMP msg▪ is passed an application-

layer message
▪ determines UDP segment

header fields values
▪ creates UDP segment

▪ passes segment to IP

UDPhUDPh SNMP msg

Transport Layer: 3-28

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP receiver actions:

SNMP msg
▪ extracts application-layer

message

▪ checks UDP checksum
header value

▪ receives segment from IP

UDPh SNMP msg
▪ demultiplexes message up

to application via socket

Transport Layer: 3-29

UDP segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

data to/from
application layer

Transport Layer: 3-30

UDP checksum

Transmitted: 5 6 11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received: 4 6 11

1st number 2nd number sum

receiver-computed
checksum

sender-computed
checksum (as received)

=

Transport Layer: 3-31

UDP checksum

sender:
▪ treat contents of UDP

segment (including UDP header
fields and IP addresses) as
sequence of 16-bit integers

▪ checksum: addition (one’s
complement sum) of segment
content

▪ checksum value put into
UDP checksum field

receiver:
▪ compute checksum of received

segment

▪ check if computed checksum equals
checksum field value:
• Not equal - error detected

• Equal - no error detected. But maybe
errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment

Transport Layer: 3-32

Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Transport Layer: 3-33

Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1

1 0

Even though
numbers have
changed (bit
flips), no change
in checksum!

Transport Layer: 3-34

Summary: UDP

▪ “no frills” protocol:

• segments may be lost, delivered out of order

• best effort service: “send and hope for the best”

▪ UDP has its plusses:

• no setup/handshaking needed (no RTT incurred)

• can function when network service is compromised

• helps with reliability (checksum)

▪ build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-36

Chapter 3: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
Transport Layer: 3-37

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

▪ cumulative ACKs

▪ pipelining:
• TCP congestion and flow control

set window size

▪ connection-oriented:
• handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

▪ flow controlled:
• sender will not overwhelm receiver

▪ point-to-point:
• one sender, one receiver

▪ reliable, in-order byte
steam:
• no “message boundaries"

▪ full duplex data:
• bi-directional data flow in

same connection
• MSS: maximum segment size

Transport Layer: 3-38

TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number

segment seq #: counting

bytes of data into bytestream
(not segments!)

application

data

(variable length)

data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection
management

FSR

Urg data pointer

PUC E

C, E: congestion notification

Transport Layer: 3-39

TCP sequence numbers, ACKs

Sequence numbers:

• byte stream “number” of
first byte in segment’s data

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from receiver

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Acknowledgements:

• seq # of next byte expected
from other side

• cumulative ACK

Q: how receiver handles out-of-
order segments

• A: TCP spec doesn’t say, - up
to implementor

Transport Layer: 3-40

TCP sequence numbers, ACKs

host ACKs receipt
of echoed ‘C’

host ACKs receipt
of‘C’, echoes back ‘C’

simple telnet scenario

Host BHost A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer: 3-41

TCP round trip time, timeout

Q: how to set TCP timeout
value?

▪ longer than RTT, but RTT varies!

▪ too short: premature timeout,
unnecessary retransmissions

▪ too long: slow reaction to
segment loss

Q: how to estimate RTT?
▪SampleRTT:measured time

from segment transmission until
ACK receipt
• ignore retransmissions

▪SampleRTT will vary, want
estimated RTT “smoother”

• average several recent
measurements, not just current
SampleRTT

Transport Layer: 3-42

TCP round trip time, timeout
EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average (EWMA)

▪ influence of past sample decreases exponentially fast

▪ typical value:  = 0.125
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.eduto fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)
Transport Layer: 3-43

TCP round trip time, timeout

▪ timeout interval: EstimatedRTT plus “safety margin”

• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

▪DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

Transport Layer: 3-44

TCP Sender (simplified)

event: data received from
application

▪ create segment with seq #

▪ seq # is byte-stream number
of first data byte in segment

▪ start timer if not already
running
• think of timer as for oldest

unACKed segment

• expiration interval:
TimeOutInterval

event: timeout
▪ retransmit segment that

caused timeout
▪ restart timer

event: ACK received

▪ if ACK acknowledges
previously unACKed segments
• update what is known to be

ACKed

• start timer if there are still
unACKed segments

Transport Layer: 3-45

TCP Receiver: ACK generation [RFC 5681]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer: 3-46

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100

X

ACK=100

ti
m

e
o
u
t

premature timeout

Host BHost A

Seq=92, 8
bytes of data

ACK=120

ti
m

e
o
u
t

ACK=100

ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SendBase=92

send cumulative
ACK for 120

Transport Layer: 3-47

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120

Transport Layer: 3-48

TCP fast retransmit
Host BHost A

ti
m

e
o
u
t

X

Seq=100, 20 bytes of data

Receipt of three duplicate ACKs
indicates 3 segments received
after a missing segment – lost

segment is likely. So retransmit!

if sender receives 3 additional
ACKs for same data (“triple
duplicate ACKs”), resend unACKed
segment with smallest seq #
▪ likely that unACKed segment lost,

so don’t wait for timeout

TCP fast retransmit

Transport Layer: 3-49

Chapter 3: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
Transport Layer: 3-50

TCP flow control
application

process

TCP socket

receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-51

TCP flow control
application

process

TCP socket

receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-52

TCP flow control
application

process

TCP socket

receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

from sender

Application removing
data from TCP socket

buffers

receive window flow control: # bytes
receiver willing to accept

Transport Layer: 3-53

TCP flow control
application

process

TCP socket

receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

flow control

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-54

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket

options (typical default is 4096 bytes)

• many operating systems autoadjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

Transport Layer: 3-55

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket

options (typical default is 4096 bytes)

• many operating systems autoadjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format

Transport Layer: 3-56

TCP connection management
before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing to establish connection)

▪ agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

Socket clientSocket =

newSocket("hostname","port number");

Socket connectionSocket =

welcomeSocket.accept();

Transport Layer: 3-57

Agreeing to establish a connection

Q: will 2-way handshake always
work in network?

▪ variable delays

▪ retransmitted messages (e.g.
req_conn(x)) due to message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Transport Layer: 3-58

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y

ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))

Transport Layer: 3-59

A human 3-way handshake protocol

1. On belay?

2. Belay on.
3. Climbing.

Transport Layer: 3-60

Closing a TCP connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

▪ simultaneous FIN exchanges can be handled

Transport Layer: 3-61

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-62

Congestion:

▪ informally: “too many sources sending too much data too fast for
network to handle”

▪manifestations:

• long delays (queueing in router buffers)

• packet loss (buffer overflow at routers)

▪ different from flow control!

Principles of congestion control

congestion control:
too many senders,

sending too fast

flow control: one sender

too fast for one receiver

▪ a top-10 problem!

Transport Layer: 3-63

Causes/costs of congestion: insights

▪ upstream transmission capacity / buffering
wasted for packets lost downstream

R/2

R/2

l
o

u
t

lin
’

▪ delay increases as capacity approached

R/2

d
e

la
y

lin

▪ un-needed duplicates further decreases
effective throughput

lin

R/2

l
o

u
t

th
ro

u
gh

p
u

t:

R/2

▪ loss/retransmission decreases effective
throughput

lin

R/2

l
o

u
t

th
ro

u
gh

p
u

t:

R/2

▪ throughput can never exceed capacity

R/2
lin

R/2

l
o

u
t

th
ro

u
gh

p
u

t:

Transport Layer: 3-64

End-end congestion control:

▪ no explicit feedback from
network

▪ congestion inferred from
observed loss, delay

Approaches towards congestion control

datadata
ACKs

ACKs

▪ approach taken by TCP

Transport Layer: 3-65

▪ TCP ECN, ATM, DECbit protocols

Approaches towards congestion control

datadata
ACKs

ACKs

explicit congestion info

Network-assisted congestion
control:

▪ routers provide direct feedback
to sending/receiving hosts with
flows passing through congested
router

▪ may indicate congestion level or
explicitly set sending rate

Transport Layer: 3-66

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-67

TCP congestion control: AIMD
▪ approach: senders can increase sending rate until packet loss

(congestion) occurs, then decrease sending rate on loss event

AIMD sawtooth

behavior: probing
for bandwidth

T
C

P
 s

e
n
d

e
r
 S

e
n
d

in
g

 r
a
te

time

increase sending rate by 1
maximum segment size every
RTT until loss detected

Additive Increase

cut sending rate in half at
each loss event

Multiplicative Decrease

Transport Layer: 3-68

TCP AIMD: more

Multiplicative decrease detail: sending rate is

▪ Cut in half on loss detected by triple duplicate ACK (TCP Reno)

▪ Cut to 1 MSS (maximum segment size) when loss detected by
timeout (TCP Tahoe)

Why AIMD?

▪ AIMD – a distributed, asynchronous algorithm – has been
shown to:

• optimize congested flow rates network wide!

• have desirable stability properties

Transport Layer: 3-69

TCP congestion control: details

▪ TCP sender limits transmission:

▪ cwnd is dynamically adjusted in response to observed
network congestion (implementing TCP congestion control)

LastByteSent- LastByteAcked < cwnd

last byte
ACKed

last byte sent

cwnd

sender sequence number space

available but
not used

TCP sending behavior:
▪ roughly: send cwnd bytes,

wait RTT for ACKS, then
send more bytes

TCP rate ~~
cwnd

RTT
bytes/secsent, but not-

yet ACKed
(“in-flight”)

Transport Layer: 3-70

TCP slow start

▪when connection begins,
increase rate exponentially
until first loss event:
• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing cwnd
for every ACK received

Host A Host B

R
T

T

time

▪ summary: initial rate is
slow, but ramps up
exponentially fast

Transport Layer: 3-71

TCP: from slow start to congestion avoidance

Q: when should the exponential
increase switch to linear?

A: when cwnd gets to 1/2 of its
value before timeout.

Implementation:
▪ variable ssthresh

▪ on loss event, ssthresh is set to
1/2 of cwnd just before loss event

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

X

Transport Layer: 3-72

Summary: TCP congestion control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK

.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0

retransmit missing segment
ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer: 3-73

TCP CUBIC
▪ Is there a better way than AIMD to “probe” for usable bandwidth?

Wmax

Wmax/2

classic TCP

TCP CUBIC - higher
throughput in this
example

▪ Insight/intuition:
• Wmax: sending rate at which congestion loss was detected

• congestion state of bottleneck link probably (?) hasn’t changed much

• after cutting rate/window in half on loss, initially ramp to to Wmax faster, but then
approach Wmax more slowly

Transport Layer: 3-74

TCP CUBIC
▪ K: point in time when TCP window size will reach Wmax

• K itself is tuneable

• larger increases when further away from K

• smaller increases (cautious) when nearer K

TCP
sending

rate

time

TCP Reno

TCP CUBIC

Wmax

t0 t1 t2 t3 t4

▪ TCP CUBIC default
in Linux, most
popular TCP for
popular Web
servers

▪ increase W as a function of the cube of the distance between current
time and K

Transport Layer: 3-75

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
▪ two bits in IP header (ToS field) marked by network router to indicate congestion
• policy to determine marking chosen by network operator

▪ congestion indication carried to destination
▪ destination sets ECE bit on ACK segment to notify sender of congestion
▪ involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment

Transport Layer: 3-76

TCP fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R
TCP connection 2

Transport Layer: 3-77

Fairness: must all network apps be “fair”?
Fairness and UDP
▪multimedia apps often do not

use TCP
• do not want rate throttled by

congestion control

▪ instead use UDP:
• send audio/video at constant rate,

tolerate packet loss

▪ there is no “Internet police”
policing use of congestion
control

Fairness, parallel TCP
connections

▪ application can open multiple
parallel connections between two
hosts

▪web browsers do this , e.g., link of
rate R with 9 existing connections:
• new app asks for 1 TCP, gets rate R/10

• new app asks for 11 TCPs, gets R/2

Transport Layer: 3-78

Additional Chapter 3 slides

Transport Layer: 3-79

TCP sender (simplified)

Transport Layer: 3-80

wait
for

event

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

L

retransmit not-yet-acked segment

with smallest seq. #
start timer

timeout

if (y > SendBase) {

SendBase = y

/* SendBase–1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)

start timer

else stop timer

}

ACK received, with ACK field value y

create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)

NextSeqNum = NextSeqNum + length(data)

if (timer currently not running)

start timer

data received from application above

TCP 3-way handshake FSM

Transport Layer: 3-81

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =

newSocket("hostname","port number");

SYN(seq=x)

Socket connectionSocket =

welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for communication

back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)ACK(ACKnum=y+1)

L

Transport Layer: 3-82

Closing a TCP connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

