Chapter 3 Transport Layer

A note on the use of these PowerPoint slides: We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top-Down Approach 8th edition Jim Kurose, Keith Ross Pearson, 2020

Transport layer: overview

Our goal:

- understand principles behind transport layer services:
 - multiplexing, demultiplexing
 - reliable data transfer
 - flow control
 - congestion control

- Iearn about Internet transport layer protocols:
 - UDP: connectionless transport
 - TCP: connection-oriented reliable transport
 - TCP congestion control

Transport layer: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

Transport services and protocols

- provide logical communication between application processes running on different hosts
- transport protocols actions in end systems:
 - sender: breaks application messages into *segments*, passes to network layer
 - receiver: reassembles segments into messages, passes to application layer
- two transport protocols available to Internet applications
 - TCP, UDP

Transport vs. network layer services and protocols

THERE was an old woman who lived in a shoe, She had so many children, she didn't know what to do. She gave them some milk and nice butter bread, She kissed them all round and put them to bed.

– household analogy:

- 12 kids in Ann's house sending letters to 12 kids in Bill's house:
- hosts = houses
- processes = kids
- app messages = letters in envelopes

Transport vs. network layer services and protocols

- network layer: logical communication between hosts
- transport layer: logical communication between processes
 - relies on, enhances, network layer services

– household analogy:

- 12 kids in Ann's house sending letters to 12 kids in Bill's house:
- hosts = houses
- processes = kids
- app messages = letters in envelopes

Transport Layer Actions

Sender:

- is passed an applicationlayer message
- determines segment header fields values
- creates segment
- passes segment to IP

Transport Layer Actions

Receiver:

- receives segment from IP
- checks header values
- extracts application-layer message
- demultiplexes message up to application via socket

application transport	
network (IP)	
link	
physical	
	•

Two principal Internet transport protocols

TCP: Transmission Control Protocol

- reliable, in-order delivery
- congestion control
- flow control
- connection setup

UDP: User Datagram Protocol

- unreliable, unordered delivery
- no-frills extension of "best-effort" IP
- services not available:
 - delay guarantees
 - bandwidth guarantees

Chapter 3: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

Multiplexing/demultiplexing

How demultiplexing works

- host receives IP datagrams
 - each datagram has source IP address, destination IP address
 - each datagram carries one transport-layer segment
 - each segment has source, destination port number
- host uses IP addresses & port numbers to direct segment to appropriate socket

TCP/UDP segment format

Connectionless demultiplexing

Recall:

when creating socket, must specify *host-local* port #:

DatagramSocket mySocket1
 = new DatagramSocket(12534);

- when creating datagram to send into UDP socket, must specify
 - destination IP address
 - destination port #

when receiving host receives *UDP* segment:

- checks destination port # in segment
- directs UDP segment to socket with that port #

IP/UDP datagrams with *same dest. port #,* but different source IP addresses and/or source port numbers will be directed to *same socket* at receiving host

Connectionless demultiplexing: an example

Connection-oriented demultiplexing

- TCP socket identified by 4-tuple:
 - source IP address
 - source port number
 - dest IP address
 - dest port number
- demux: receiver uses all four values (4-tuple) to direct segment to appropriate socket

- server may support many simultaneous TCP sockets:
 - each socket identified by its own 4-tuple
 - each socket associated with a different connecting client

Connection-oriented demultiplexing: example

dest port: 80 are demultiplexed to *different* sockets

Summary

- Multiplexing, demultiplexing: based on segment, datagram header field values
- UDP: demultiplexing using destination port number (only)
- TCP: demultiplexing using 4-tuple: source and destination IP addresses, and port numbers
- Multiplexing/demultiplexing happen at *all* layers

Chapter 3: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

UDP: User Datagram Protocol

- "no frills," "bare bones" Internet transport protocol
- "best effort" service, UDP segments may be:
 - lost
 - delivered out-of-order to app
- connectionless:
 - no handshaking between UDP sender, receiver
 - each UDP segment handled independently of others

Why is there a UDP?

- no connection establishment (which can add RTT delay)
- simple: no connection state at sender, receiver
- small header size
- no congestion control
 - UDP can blast away as fast as desired!
 - can function in the face of congestion

UDP: User Datagram Protocol

UDP use:

- streaming multimedia apps (loss tolerant, rate sensitive)
- DNS
- SNMP
- HTTP/3
- if reliable transfer needed over UDP (e.g., HTTP/3):
 - add needed reliability at application layer
 - add congestion control at application layer

UDP: User Datagram Protocol [RFC 768]

INTERNET STANDARD

RFC 768

J. Postel ISI 28 August 1980

User Datagram Protocol

Introduction

This User Datagram Protocol (UDP) is defined to make available a datagram mode of packet-switched computer communication in the environment of an interconnected set of computer networks. This protocol assumes that the Internet Protocol (IP) [1] is used as the underlying protocol.

This protocol provides a procedure for application programs to send messages to other programs with a minimum of protocol mechanism. The protocol is transaction oriented, and delivery and duplicate protection are not guaranteed. Applications requiring ordered reliable delivery of streams of data should use the Transmission Control Protocol (TCP) [2].

Format

 0
 7 8
 15 16
 23 24
 31

 +----+
 Source
 Destination
 Port

 Port
 Port
 Port
 Port

 Length
 Checksum
 Checksum
 Checksum

 +----+
 data octets ...
 ----+
 ----+

UDP: Transport Layer Actions

UDP: Transport Layer Actions

UDP sender actions:

- is passed an applicationlayer message
- determines UDP segment header fields values
- creates UDP segment
- passes segment to IP

SNMP server

UDP: Transport Layer Actions

SNMP client

UDP receiver actions:

- receives segment from IP
- checks UDP checksum header value
- extracts application-layer message
- demultiplexes message up to application via socket

SNMP server

UDP segment header

UDP checksum

Goal: detect errors (*i.e.,* flipped bits) in transmitted segment

UDP checksum

Goal: detect errors (*i.e.*, flipped bits) in transmitted segment

sender:

- treat contents of UDP segment (including UDP header fields and IP addresses) as sequence of 16-bit integers
- checksum: addition (one's complement sum) of segment content
- checksum value put into UDP checksum field

receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - Not equal error detected
 - Equal no error detected. *But maybe* errors nonetheless? More later

Internet checksum: an example

example: add two 16-bit integers

	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
wraparound	11	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1 →
sum	1	0	1	1	1	0	1	1	1	0	1	1	1	1	0	0
checksum	0	1	0	0	0	1	0	0	0	1	0	0	0	0	1	1

Note: when adding numbers, a carryout from the most significant bit needs to be added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Internet checksum: weak protection!

Summary: UDP

- "no frills" protocol:
 - segments may be lost, delivered out of order
 - best effort service: "send and hope for the best"
- UDP has its plusses:
 - no setup/handshaking needed (no RTT incurred)
 - can function when network service is compromised
 - helps with reliability (checksum)
- build additional functionality on top of UDP in application layer (e.g., HTTP/3)

Chapter 3: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

Chapter 3: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- Principles of congestion control
- TCP congestion control

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

- point-to-point:
 - one sender, one receiver
- reliable, in-order byte steam:
 - no "message boundaries"
- full duplex data:
 - bi-directional data flow in same connection
 - MSS: maximum segment size

cumulative ACKs

pipelining:

- TCP congestion and flow control set window size
- connection-oriented:
 - handshaking (exchange of control messages) initializes sender, receiver state before data exchange
- flow controlled:
 - sender will not overwhelm receiver

TCP segment structure

TCP sequence numbers, ACKs

Sequence numbers:

 byte stream "number" of first byte in segment's data

Acknowledgements:

- seq # of next byte expected from other side
- cumulative ACK
- <u>Q</u>: how receiver handles out-oforder segments
 - <u>A:</u> TCP spec doesn't say, up to implementor

TCP sequence numbers, ACKs

simple telnet scenario

TCP round trip time, timeout

- <u>Q</u>: how to set TCP timeout value?
- Ionger than RTT, but RTT varies!
- too short: premature timeout, unnecessary retransmissions
- too long: slow reaction to segment loss

<u>**Q**</u>: how to estimate RTT?

- SampleRTT: measured time from segment transmission until ACK receipt
 - ignore retransmissions
- SampleRTT will vary, want estimated RTT "smoother"
 - average several *recent* measurements, not just current SampleRTT

TCP round trip time, timeout

EstimatedRTT = $(1 - \alpha)$ *EstimatedRTT + α *SampleRTT

- <u>exponential</u> <u>w</u>eighted <u>m</u>oving <u>a</u>verage (EWMA)
- influence of past sample decreases exponentially fast
- typical value: α = 0.125

TCP round trip time, timeout

• timeout interval: EstimatedRTT plus "safety margin"

• large variation in **EstimatedRTT**: want a larger safety margin

 TimeoutInterval
 = EstimatedRTT
 + 4*DevRTT

 Image: Stress of the stress of th

• **DevRTT**: EWMA of **SampleRTT** deviation from **EstimatedRTT**:

DevRTT = $(1-\beta)$ *DevRTT + β * |SampleRTT-EstimatedRTT|

(typically, $\beta = 0.25$)

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

TCP Sender (simplified)

event: data received from application

- create segment with seq #
- seq # is byte-stream number of first data byte in segment
- start timer if not already running
 - think of timer as for oldest unACKed segment
 - expiration interval:
 TimeOutInterval

event: timeout

- retransmit segment that caused timeout
- restart timer

event: ACK received

- if ACK acknowledges previously unACKed segments
 - update what is known to be ACKed
 - start timer if there are still unACKed segments

TCP Receiver: ACK generation [RFC 5681]

Event at receiver	TCP receiver action

TCP: retransmission scenarios

TCP: retransmission scenarios

TCP fast retransmit

TCP fast retransmit

if sender receives 3 additional ACKs for same data ("triple duplicate ACKs"), resend unACKed segment with smallest seq #

 likely that unACKed segment lost, so don't wait for timeout

Receipt of three duplicate ACKs indicates 3 segments received after a missing segment – lost segment is likely. So retransmit!

Chapter 3: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- Principles of congestion control
- TCP congestion control

<u>Q</u>: What happens if network layer delivers data faster than application layer removes data from socket buffers?

<u>Q</u>: What happens if network layer delivers data faster than application layer removes data from socket buffers?

<u>Q</u>: What happens if network layer delivers data faster than application layer removes data from socket buffers?

<u>Q</u>: What happens if network layer delivers data faster than application layer removes data from socket buffers?

-flow control

receiver controls sender, so sender won't overflow receiver's buffer by transmitting too much, too fast

- TCP receiver "advertises" free buffer space in **rwnd** field in TCP header
 - **RcvBuffer** size set via socket options (typical default is 4096 bytes)
 - many operating systems autoadjust
 RcvBuffer
- sender limits amount of unACKed ("in-flight") data to received **rwnd**
- guarantees receive buffer will not overflow

- TCP receiver "advertises" free buffer space in **rwnd** field in TCP header
 - **RcvBuffer** size set via socket options (typical default is 4096 bytes)
 - many operating systems autoadjust
 RcvBuffer
- sender limits amount of unACKed ("in-flight") data to received **rwnd**
- guarantees receive buffer will not overflow

TCP segment format

TCP connection management

before exchanging data, sender/receiver "handshake":

- agree to establish connection (each knowing the other willing to establish connection)
- agree on connection parameters (e.g., starting seq #s)


```
Socket clientSocket =
    newSocket("hostname","port number");
```


Socket connectionSocket =
welcomeSocket.accept();

Agreeing to establish a connection

2-way handshake:

<u>*Q:*</u> will 2-way handshake always work in network?

- variable delays
- retransmitted messages (e.g. req_conn(x)) due to message loss
- message reordering
- can't "see" other side

TCP 3-way handshake

Server state

A human 3-way handshake protocol

Closing a TCP connection

- client, server each close their side of connection
 - send TCP segment with FIN bit = 1
- respond to received FIN with ACK
 - on receiving FIN, ACK can be combined with own FIN
- simultaneous FIN exchanges can be handled

Chapter 3: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

Principles of congestion control

Congestion:

- Informally: "too many sources sending too much data too fast for network to handle"
- manifestations:
 - long delays (queueing in router buffers)
 - packet loss (buffer overflow at routers)
- different from flow control!
- a top-10 problem!

congestion control: too many senders, sending too fast

flow control: one sender too fast for one receiver

Causes/costs of congestion: insights

- throughput can never exceed capacity
- delay increases as capacity approached
- loss/retransmission decreases effective throughput
- un-needed duplicates further decreases effective throughput
- upstream transmission capacity / buffering wasted for packets lost downstream

Approaches towards congestion control

End-end congestion control:

- no explicit feedback from network
- congestion *inferred* from observed loss, delay
- approach taken by TCP

Approaches towards congestion control

Network-assisted congestion control:

- routers provide *direct* feedback to sending/receiving hosts with flows passing through congested router
- may indicate congestion level or explicitly set sending rate
- TCP ECN, ATM, DECbit protocols

Chapter 3: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

TCP congestion control: AIMD

approach: senders can increase sending rate until packet loss (congestion) occurs, then decrease sending rate on loss event

TCP AIMD: more

Multiplicative decrease detail: sending rate is

- Cut in half on loss detected by triple duplicate ACK (TCP Reno)
- Cut to 1 MSS (maximum segment size) when loss detected by timeout (TCP Tahoe)

Why <u>AIM</u>D?

- AIMD a distributed, asynchronous algorithm has been shown to:
 - optimize congested flow rates network wide!
 - have desirable stability properties

TCP congestion control: details

TCP sending behavior:

roughly: send cwnd bytes, wait RTT for ACKS, then send more bytes

TCP rate
$$\approx \frac{\text{cwnd}}{\text{RTT}}$$
 bytes/sec

- TCP sender limits transmission: LastByteSent- LastByteAcked ≤ cwnd
- cwnd is dynamically adjusted in response to observed network congestion (implementing TCP congestion control)

TCP slow start

- when connection begins, increase rate exponentially until first loss event:
 - initially cwnd = 1 MSS
 - double cwnd every RTT
 - done by incrementing cwnd for every ACK received
- summary: initial rate is slow, but ramps up exponentially fast

TCP: from slow start to congestion avoidance

Q: when should the exponential increase switch to linear?

A: when **cwnd** gets to 1/2 of its value before timeout.

Implementation:

- variable ssthresh
- on loss event, ssthresh is set to 1/2 of cwnd just before loss event

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
Summary: TCP congestion control

TCP CUBIC

- Is there a better way than AIMD to "probe" for usable bandwidth?
- Insight/intuition:
 - W_{max}: sending rate at which congestion loss was detected
 - congestion state of bottleneck link probably (?) hasn't changed much
 - after cutting rate/window in half on loss, initially ramp to to W_{max} *faster*, but then approach W_{max} more *slowly*

TCP CUBIC

- K: point in time when TCP window size will reach W_{max}
 - K itself is tuneable
- increase W as a function of the *cube* of the distance between current time and K
 - larger increases when further away from K
 - smaller increases (cautious) when nearer K
- TCP CUBIC default in Linux, most popular TCP for popular Web servers

Explicit congestion notification (ECN)

TCP deployments often implement *network-assisted* congestion control:

- two bits in IP header (ToS field) marked by network router to indicate congestion
 - *policy* to determine marking chosen by network operator
- congestion indication carried to destination
- destination sets ECE bit on ACK segment to notify sender of congestion
- involves both IP (IP header ECN bit marking) and TCP (TCP header C, E bit marking)

TCP fairness

Fairness goal: if *K* TCP sessions share same bottleneck link of bandwidth *R*, each should have average rate of *R/K*

Fairness: must all network apps be "fair"?

Fairness and UDP

- multimedia apps often do not use TCP
 - do not want rate throttled by congestion control
- instead use UDP:
 - send audio/video at constant rate, tolerate packet loss
- there is no "Internet police" policing use of congestion control

Fairness, parallel TCP connections

- application can open *multiple* parallel connections between two hosts
- web browsers do this , e.g., link of rate R with 9 existing connections:
 - new app asks for 1 TCP, gets rate R/10
 - new app asks for 11 TCPs, gets R/2

Additional Chapter 3 slides

TCP sender (simplified)

TCP 3-way handshake FSM

Closing a TCP connection

