# Circuit Theory Final examination. June 23, 2022 

Time limit: 2 hours. Revision day; July 4
Each equation, or group of equations, must be preceded by a brief explanation of what you want to do.

## 1 Problem: (15 \%)

Consider the connection of the generator (on the left made of three elements) with the load (on the right).

a) Compute the value of $R_{L}$ in order to transfer the maximum power from the generator to the load. Use this value in the following questions.
b) Compute the power transferred to the load.
c) Compute the power at each one of the three elements of the generator.

## 2 Problem (15 \%)

a) Determine $v_{o}$.
b) Give values to the resistances, in order to have $v_{o}=-\left(v_{1}+v_{2}\right)$.


## 3 Problem: (15 \%)

a) First, Use the nodal analysis to determine the voltage $v_{x}$.
b) Next, determine $i_{R_{4}}$.
c) Finally compute $i_{R_{4}}$ when $v_{g}=10 \mathrm{~V}$ ans $R_{1}=R_{2}=R_{3}=R_{4}=r=1 \mathrm{k} \Omega$.


## 4 Problem: (15 \%)

Use the following circuit as a signal conditioner to condition an audio signal $v_{g}$ that takes values from -0.5 V to +0.5 V . The goal is that $v_{o}=+3 v_{g}+1.65$ or $v_{o}=-3 v_{g}+1.65$. Note that the OA is powered at 3.3 V and 0 V .

a) First, give values to $R_{1}, R_{2}$ and $V_{a}$. If $v_{g}=0.5 * \cos (2 \pi 10 t)$, draw the output $v_{o}$.
b) Next, consider the use of the power source of the OA (of 3.3 V ) to avoid the use of $v_{a}$.

## 5 Problem: (20 \%)

a) Compute the voltage at $v_{1}, v_{2}$ and $v_{3}$ with respect to the reference in yellow.
b) Compute the voltage at $v_{1}, v_{2}$ and $v_{3}$ with respect to the reference in green.
c) Compute the currents through $R_{1}, R_{2}$ and $R_{3}$. Draw the direction in the circuit.
d) Compute $i_{x}$.
e) Give a value to $R_{2}$ in order to have $i_{x}=0$.


## 6 Problem: (20 \%)

a) Draw $v_{o}(t)$, between $t=0$ and $t=3 \mathrm{~ms}$, considering $R_{1}=1.5 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega, C_{1}=1.5 \mu \mathrm{~F}$ and $C_{2}=3 \mu \mathrm{~F}$. Compute $v_{o}(t)$ at $t=0, t=1 \mathrm{~ms}, t=2 \mathrm{~ms}$ and $t=3 \mathrm{~ms}$.
b) Calculate the total energy stored by both capacitors at the instant when this energy is at its maximum.
c) Compute when the LED will be turned ON and OFF.


