Circuit Theory Final examination. June 23, 2022

Time limit: 2 hours. Revision day; July 4

Each equation, or group of equations, **must be preceded by a brief explanation** of what you want to do.

1 Problem: (15 %)

Consider the connection of the generator (on the left made of three elements) with the load (on the right).

- a) Compute the value of R_L in order to transfer the maximum power from the generator to the load. Use this value in the following questions.
- b) Compute the power transferred to the load.
- c) Compute the power at each one of the three elements of the generator.

2 Problem (15 %)

- a) Determine v_o .
- b) Give values to the resistances, in order to have $v_o = -(v_1 + v_2)$.

3 Problem: (15 %)

- a) First, Use the nodal analysis to determine the voltage v_x .
- b) Next, determine i_{R_4} .
- c) Finally compute i_{R_4} when $v_g = 10$ V and $R_1 = R_2 = R_3 = R_4 = r = 1$ k Ω .

4 Problem: (15 %)

Use the following circuit as a signal conditioner to condition an audio signal v_g that takes values from -0.5 V to +0.5 V. The goal is that $v_o = +3v_g + 1.65$ or $v_o = -3v_g + 1.65$. Note that the OA is powered at 3.3 V and 0 V.

- a) First, give values to R_1 , R_2 and V_a . If $v_g = 0.5 * \cos(2\pi 10t)$, draw the output v_o .
- b) Next, consider the use of the power source of the OA (of 3.3 V) to avoid the use of v_a .

5 Problem: (20 %)

- a) Compute the voltage at v_1 , v_2 and v_3 with respect to the reference in yellow.
- b) Compute the voltage at v_1 , v_2 and v_3 with respect to the reference in green.
- c) Compute the currents through R_1 , R_2 and R_3 . Draw the direction in the circuit.
- d) Compute i_x .
- e) Give a value to R_2 in order to have $i_x = 0$.

6 Problem: (20 %)

- a) Draw $v_o(t)$, between t = 0 and t = 3 ms, considering $R_1 = 1.5 \text{ k}\Omega$, $R_2 = 3 \text{ k}\Omega$, $C_1 = 1.5 \text{ \mu F}$ and $C_2 = 3 \text{ \mu F}$. Compute $v_o(t)$ at t = 0, t = 1 ms, t = 2 ms and t = 3 ms.
- b) Calculate the total energy stored by both capacitors at the instant when this energy is at its maximum.
- c) Compute when the LED will be turned ON and OFF.

