Chapter 9: Main Memory

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

Ch.1: How a Modern Computer Works

A von Neumann architecture and a depiction of the interplay of
all components of a computer system:

; . instruction execution —-
_ 5 cycle instructions
thread of execution | 3 and
«—— data movement —»
data
CPU ('N) /
| A I
S5 Sy
= o = DMA
] 4] e, |
= 5 2
a =, memory
L 2

9.2

Q: Where can be the system bottleneck?

CPU?
Memory access?
Disk access?

External input (User input, network connection, etc.)?

m Depends on the application

e Q: For each system component above, describe an
application/program that would create a bottleneck

[
A=

9.3

Ch.1: Storage-device hierarchy

storage capacity access time
A a : ﬁ A
o | registers
] i | -
— i]
| primary
E | cache ﬁ storage I
= o | i
volatile U
main memaory
nenzvolatile non-volatile memory secondary
H | [storage
i v
magnetic disk
, I
Il :
optical disk
o
a iy tertiary g
o |~ storage o
T =
B magnetic tapes
\ Y

9.4

Ch.1: Performance of Various Levels of Storage

Level 1 2 3 4 5
Name registers cache main memory solid state disk magnetic disk
Typical size <1KB < 16MB < 64GB <1TB <10TB
Implementation custom memory | on-chip or CMOS SRAM flash memory magnetic disk
technology with multiple off-chip

ports CMOS CMOS SRAM
Access time (ns) 0.25-0.5 0.5-25 80-250 25,000 - 50,000 |5,000,000
Bandwidth (MB/sec) | 20,000 - 100,000 | 5,000 - 10,000 | 1,000 - 5,000 500 20-150
Managed by compiler hardware operating system | operating system | operating system
Backed by cache main memory | disk disk disk or tape

9.5

Movement between levels of storage hierarchy can be explicit or implicit

Duties of a Memory Management System

Define an address representation that can be translated between CPU,
memory, and program (the code)

Memory access protection
Efficient handling of memory

e Efficient algorithms to choose the best memory portion(s) for a given
demand

e Reduce unused part of memory
Decide which process to add or remove from memory

9.6

Background

Program must be brought (from disk) into memory and placed within a
process for it to be run

Memory unit only sees a stream of:
e addresses + read requests, or
e address + data and write requests
Memory unit does not know how these addresses were generated

e Address representation (used by CPU, memory, and processes)
should be defined clearly

Access to the main memory can take many cycles, causing a CPU stall
e Register access is done in one CPU clock
e Cache sits between main memory and CPU registers

Protection of memory required to ensure correct operation

9.7

Memory Protection

® Q: Protect which part of memory from whom?

e Need to ensure that a user process can only access to its address
(memory) space

m \We can provide this protection by using a pair of base and limit
registers that define the logical address space of a process

m OS has access to: . operating
e these two registers Sysiem
256000
® user process memory —
» Q: Why? 300040 - base
e and, of course, OS memory process

-

420940 base + limit

process

880000

1024000

9.8

Hardware Address Protection

m CPU must check every memory access generated in user mode to be
sure it is between base and limit for that user

base base + limit

CPU address <2 yes) yes

no no

trap to operating system
illegal addressing error memory

m the instructions to loading the base and limit registers are privileged

[
el

9.9

Address Binding

Programs on disk, ready to be brought into memory to execute form an input
queue
Addresses represented in different ways at different stages of a program'’s life
An example:
e Source code addresses are usually symbolic
» e.g., variables: “int i”, “int ¥}
e Compiler binds them to relocatable addresses
» e.g. “14 bytes from beginning of this module”

e Linker or loader will bind relocatable addresses to absolute addresses

» e.g. 74014
e Each binding maps one address space to another

9.10

Address Binding Options

® Binding of instructions and data to absolute memory addresses can

happen at different stages: I/s;;;>
e Compile time: If memory location known a priori, absolute \T
code can be generated compier o }mpue
» must recompile the code if the starting location changes /,1,
» MS-DOS was using this method for .COM executables Ght\ \m‘SFD
loaded at a pre-set address: at offset 0100h & "nlge
e Load time: if memory location is not known at compile time, T
compiler must generate relocatable code, the absolute address l/l;ad | load
can be generated at load time m@. N2
» If initial address changes, load again o oader
e Execution time: Binding delayed until run time if the process "\\:‘L?E‘/\ .
can be moved during its execution from one memory segment to e | “Gnen” Ji@‘?‘ﬁ:‘fii?n"
another mee |)™

» Need hardware support for address maps (e.g., base and
limit registers)

e Q: Why would one need Execution Time binding?

9.11

Logical vs. Physical Address Space

The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management

e Logical address — used by the CPU; also referred to as virtual
address

e Physical address —used by the memory

Logical and physical addresses are the same in compile-time and load-
time address-binding schemes. Q: Why?

Logical (virtual) and physical addresses differ in execution-time address-
binding scheme

Logical address space is the set of all logical addresses used by a
program

Physical address space is the set of all physical addresses used by a
program

9.12

Memory-Management Unit (MMU)

® Hardware device that at run time maps virtual to physical address

logical physical
address address

physical
MMU memory

Y

CPU

Y

m The user program deals with logical addresses; it never sees the real
physical addresses

e Execution-time binding occurs when reference is made to location in
memory

®m Many methods possible, covered in the rest of this chapter

9.13

Memory-Management Unit (Simple Sol’n)

Consider simple scheme, which is a generalization of the base-register
scheme

The base register now called relocation register

The value in the relocation register is added to every address generated
by a user process at the time it is sent to memory

relocation
register

logical physical
address m address
CPU > S > memory
346 w 14346

MMU

9.14

Contiguous Allocation

Main memory must support both OS and user processes
Limited resource, must allocate efficiently
Contiguous allocation is one early method
Main memory usually into two partitions:
e Resident operating system, usually held in low memory
e User processes then held in high memory
e Each process contained in single contiguous section of memory

9.15

Contiguous Allocation (Cont.)

m Relocation registers enable protecting the user processes from each
other, and from changing operating-system code and data

Relocation register contains the smallest address
Limit register contains the upper limit of addresses

At context switch, the dispatcher loads the relocation and limit
registers with the correct values

Allows actions such as kernel code being transient and kernel
changing size

» €.g., by removing from the memory the code and data related to
a device or service that is not being used

9.16

Hardware Support for Relocation and Limit Registers

limit relocation
register register
logical physical
address yes address
CPU P it » memory
no
L 4
trap: addressing error

9.17

Memory Partitioning

m Simple approach: Fixed size partitions
e Q: Disadvantages?
» Degree of multiprogramming limited by number of partitions
» Inefficient use of space

® Modern alternative:
e Variable-partition sizes for efficiency (sized to a given process’ needs)

» When a process arrives, it is allocated memory from a hole large enough to
accommodate it

» Process exiting frees its partition, adjacent free partitions combined

» Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

high
memory 0S 0S OS 0S
process 5 process 5 process 5
process 9 process 9
process 8 = — —
low
memory | PTOCEss 2 process 2 process 2 process 2

9.18

Dynamic Storage-Allocation Problem

Q. How to satisfy a request of size n from a list of free holes?

First-fit: Allocate the first hole that is big enough

Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size

e Produces the smallest leftover hole

Worst-fit: Allocate the largest hole; must also search
entire list

e Produces the largest leftover hole

Quick-fit: Keep a list of holes grouped by sizes, e.g., 4K,
8K, etc.

e Fast allocation
e Size changes (e.g. merging) are costly to manage

Statistically, first-fit and best-fit is better than worst-fit in terms of

storage utilization

9.19

Fragmentation

m External Fragmentation

e total memory space exists to satisfy a request, but it is not
contiguous

m Internal Fragmentation
e allocated memory may be slightly larger than requested memory;

» €.g., process requires 18462 bytes, but we have a hole of 18464
bytes

e management of the small (e.g. 2 bytes) holes is more costly than
using them

® S0, give the whole space to the process

m First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost
to fragmentation

e 1/3 may be unusable -> 50-percent rule

9.20

