
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 9: Main Memory

9.2

Ch.1: How a Modern Computer Works
A von Neumann architecture and a depiction of the interplay of
all components of a computer system:

9.3

Q: Where can be the system bottleneck?

 CPU?
 Memory access?
 Disk access?
 External input (User input, network connection, etc.)?

 Depends on the application
 Q: For each system component above, describe an

application/program that would create a bottleneck

9.4

Ch.1: Storage-device hierarchy

9.5

Ch.1: Performance of Various Levels of Storage

Movement between levels of storage hierarchy can be explicit or implicit

9.6

Duties of a Memory Management System

 Define an address representation that can be translated between CPU,
memory, and program (the code)

 Memory access protection
 Efficient handling of memory

 Efficient algorithms to choose the best memory portion(s) for a given
demand

 Reduce unused part of memory
 Decide which process to add or remove from memory
 …

9.7

Background

 Program must be brought (from disk) into memory and placed within a
process for it to be run

 Memory unit only sees a stream of:
 addresses + read requests, or
 address + data and write requests

 Memory unit does not know how these addresses were generated
 Address representation (used by CPU, memory, and processes)

should be defined clearly
 Access to the main memory can take many cycles, causing a CPU stall

 Register access is done in one CPU clock
 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

9.8

Memory Protection

 Q: Protect which part of memory from whom?
 Need to ensure that a user process can only access to its address

(memory) space
 We can provide this protection by using a pair of base and limit

registers that define the logical address space of a process
 OS has access to:

 these two registers
 user process memory

 Q: Why?
 and, of course, OS memory

9.9

Hardware Address Protection

 CPU must check every memory access generated in user mode to be
sure it is between base and limit for that user

 the instructions to loading the base and limit registers are privileged

9.10

Address Binding

 Programs on disk, ready to be brought into memory to execute form an input
queue

 Addresses represented in different ways at different stages of a program’s life
 An example:

 Source code addresses are usually symbolic
 e.g., variables: “int i”, “int *j”

 Compiler binds them to relocatable addresses
 e.g. “14 bytes from beginning of this module”

 Linker or loader will bind relocatable addresses to absolute addresses
 e.g. 74014

 Each binding maps one address space to another

9.11

Address Binding Options

 Binding of instructions and data to absolute memory addresses can
happen at different stages:
 Compile time: If memory location known a priori, absolute

code can be generated
 must recompile the code if the starting location changes
 MS-DOS was using this method for .COM executables

– loaded at a pre-set address: at offset 0100h
 Load time: if memory location is not known at compile time,

compiler must generate relocatable code, the absolute address
can be generated at load time
 If initial address changes, load again

 Execution time: Binding delayed until run time if the process
can be moved during its execution from one memory segment to
another
 Need hardware support for address maps (e.g., base and

limit registers)
 Q: Why would one need Execution Time binding?

9.12

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management
 Logical address – used by the CPU; also referred to as virtual

address
 Physical address –used by the memory

 Logical and physical addresses are the same in compile-time and load-
time address-binding schemes. Q: Why?

 Logical (virtual) and physical addresses differ in execution-time address-
binding scheme

 Logical address space is the set of all logical addresses used by a
program

 Physical address space is the set of all physical addresses used by a
program

9.13

Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical address

 The user program deals with logical addresses; it never sees the real
physical addresses
 Execution-time binding occurs when reference is made to location in

memory
 Many methods possible, covered in the rest of this chapter

9.14

Memory-Management Unit (Simple Sol’n)

 Consider simple scheme, which is a generalization of the base-register
scheme

 The base register now called relocation register
 The value in the relocation register is added to every address generated

by a user process at the time it is sent to memory

9.15

Contiguous Allocation

 Main memory must support both OS and user processes
 Limited resource, must allocate efficiently
 Contiguous allocation is one early method
 Main memory usually into two partitions:

 Resident operating system, usually held in low memory
 User processes then held in high memory
 Each process contained in single contiguous section of memory

9.16

Contiguous Allocation (Cont.)

 Relocation registers enable protecting the user processes from each
other, and from changing operating-system code and data
 Relocation register contains the smallest _______ address
 Limit register contains the upper limit of _______ addresses
 At context switch, the dispatcher loads the relocation and limit

registers with the correct values
 Allows actions such as kernel code being transient and kernel

changing size
 e.g., by removing from the memory the code and data related to

a device or service that is not being used

9.17

Hardware Support for Relocation and Limit Registers

9.18

Memory Partitioning
 Simple approach: Fixed size partitions

 Q: Disadvantages?
 Degree of multiprogramming limited by number of partitions
 Inefficient use of space

 Modern alternative:
 Variable-partition sizes for efficiency (sized to a given process’ needs)

 When a process arrives, it is allocated memory from a hole large enough to
accommodate it

 Process exiting frees its partition, adjacent free partitions combined
 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

9.19

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough
 Best-fit: Allocate the smallest hole that is big enough;

must search entire list, unless ordered by size
 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search
entire list
 Produces the largest leftover hole

 Quick-fit: Keep a list of holes grouped by sizes, e.g., 4K,
8K, etc.
 Fast allocation
 Size changes (e.g. merging) are costly to manage

Q. How to satisfy a request of size n from a list of free holes?

Statistically, first-fit and best-fit is better than worst-fit in terms of
storage utilization

9.20

Fragmentation

 External Fragmentation
 total memory space exists to satisfy a request, but it is not

contiguous

 Internal Fragmentation
 allocated memory may be slightly larger than requested memory;

 e.g., process requires 18462 bytes, but we have a hole of 18464
bytes

 management of the small (e.g. 2 bytes) holes is more costly than
using them

 so, give the whole space to the process

 First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost
to fragmentation
 1/3 may be unusable -> 50-percent rule

