
Mark B. Kraeling
Cummins Engine Company

1460 National Road, MS C7004
Columbus, Indiana 47201

email: kraeling@cel.cummins.com

CT C does not lend itself well to data abstraction or
object-oriented programming.
C trusts the programmer, and does not prevent
the programmer from accessing any data
locations.

The process of developing software varies
from company to company, and often project to
project. Often lost in the argument of which
process to use is coding for optimization of
throughput and resources.

This paper will explore different ways of
optimizing C source code. Topics presented
include, but are not limited to, the importance of
selecting a compiler and understanding its
options at the beginning of a project, analysis of
fixed-point versus floating point operations, and
ways to conserve stack and memory resources.
Comparisons between compilers and processors
will not be addressed, but data and examples will
be given to show improvements on multiple
platforms.

PROGRAMMING IN C

At the start of a project, it is important to
evaluate which programming language to use.
Below are a few fundamental ideas about using
the C programming language:

C is a general-purpose programming
language.

C is a relatively “low-level” language;
programmers deal with addresses, storage
sizes, and logical operators much in the same
way as real computers do.

C provides fundamental control-flow constructs
such as if-else, switch, for, and do-while,
allowing well-structured programs.

0 C code can be developed to run very fast, even
though in doing so it may not be very portable
across different platforms and processors.

SELECTING A COMPILEWOPTIONS

At the beginning of a project, the platform is
normally selected based on current and
anticipated processing needs. In the course of a
project, the processing time and throughput may
creep upward, eventually causing problems to
occur. It then becomes vital to optimize the
system for fast execution. Similarly, when RAM or
other memory begins to increase above
forecasted use, it becomes necessary to optimize
for code size and memory use.

Early C compilers were not very good at
looking for improvements which often caused the
generated machine code to be far from optimum.
Today, high-quality compilers normally include an
optimizer which examines the generated
assembly code and looks for ways to improve it.
The compilers will generate machine instructions
based on the C code written, and then make
multiple passes through the code to look for
improvements. The compiler will update the
machine code with improvements and continue to
analyze the code until no further enhancements
can be made. Ideally, these compilers will
generate the same assembly code independent
of coding style used within the source code. This
allows programmers to code with clarity and
readability in mind.

0-7803-3274-1 574

mailto:kraeling@cel.cummins.com

One compiler option is eliminating redundant
code. This involves looking for operations that
produce no useful result when performed. When
the compiler finds these statements while
optimizing, it will remove them from the compiled
machine code.

a = a + 0;
b + c;
d &= d;

<-- no code generated
<-- no code generated
<-- no code generated

Another compiler option is replacing operations
with equivalent but faster operations that do not
effect the final result. Costly multiply and divide
operators are replaced with left and right shift
operators wherever possible. The modulus (Yo)
operator is replaced with the bit-and operator
wherever possible. If your compiler does not
make these optimizations for you, then it may
become necessary to put the equivalent
operations directly in the source code.

x = y * 16 -- replaced with --> x = y << 4
(unsigned)y / 64 -- replaced with --> y >> 6
(unsigned)z Yo 8 -- replaced with --7 z & 7

Many of the newer C compilers are also very
good at making effective use of the processor’s
registers that are available. Even on small 8-bit
processors, arguments that are supposed to be
passed to and from functions are placed in fast
registers instead. On larger 32- and 64-bit
platforms, more registers are available to take
advantage of this optimization. This helps to keep
pushing and pulling of data off the stack to a
minimum, again helping to increase speed. The
example below shows a C segment compiled on
a 32-bit platform. Notice that the function
assembler output below places the result in
register dO as opposed to pushing the result onto
the stack.

Code: Assembler Output :

static char j, k; m0ve.b J, dO
char Example(void) add.b -k, dO
{ rtS

1
return (j + k);

Compiler optimizations can also remove code
segments that it knows cannot be executed
based on the code conditions. This unreachable
code occurs through preprocessor conditional
compiles or other olptimizations that the compiler
has made. The corripiler will normally generate a
warning message if the unreachable code is a
result of preprocessor conditional compiles or
programmer’s error. Two examples of
unreachable code are shown below.

got0 L1:
j = 20; --> no code generated
k = 40; --> no code generated

L1:
f = 30;

if (a != a) b = 10; --> no code generated

When optimizinlg for speed, the compiler can
also “unroll” loops. lh is normally involves looking
for less than a fixed number of iterations of a loop.
If a small number is found, instead of having a
compare and a conditional branch being
performed, it places the particular operations
repetitively. This helps a developer write well-
written code without worrying about manually
unrolling the smaller loops in the code. For a
small number of iterations, it may also save on the
code size.

There are some things to look out for when
having the compiler (do optimizations for you. The
code executed on the processor will change when
the compiler optirriizer options change. This
makes it important to have all the programmers
on a project use the same set of options. Perform
unit and systems tests using options intended for
the final product. Comparing the source code and
generated assembly output can reveal errors in
the code or errors when the compiler made
improvements. Looking at the assembly output
can also help you to become a better programmer
in general.

575

AND FLOATING POINT OP

Most microprocessors and microcontrollers
used for embedded or small systems today do not
have hardware-assisted floating-point math
support. Having a math coprocessor is an added
expense that some platforms do not need. The C
compilers of today implement floating-point used
in C source code with floating-point emulation
libraries. These libraries are written by the
compiler companies to perform fixed-point
conversions and operations to handle floating-
point math.

A common way to execute code faster when
hardware-assisted floating-point support is not
available is to use fixed-point math instead of
floating-point emulation math. This allows the
compiler to use machine instructions for the math
operations as opposed to the floating-point emu-
lation libraries. This will cut down the amount of
processing time needed to do mathematical
operations. An even better alternative is to use
fixed-point representation of base two numbers
so the optimizer on the compiler can determine
that multiplying by eight is the same as left bit
shifting by three. Floating-point emulation librar-
ies also take up additional RAM and fixed mem-
ory, so using fixed-point will also decrease code
size.

To determine the differences between fixed-
point and floating-point emulation multiplies, an
emulator with time measurement capability was
used. On an 8-bit platform, an 8-bit fixed multiply
took 12 microseconds. On the same 8-bit
platform, a floating-point multiply took 250
microseconds. On a 32-bit platform, a 32-bit fixed
multiply took 3 microseconds. On the same 32-bit
platform, a floating-point multiply took 40
microseconds. This shows there are definite
advantages in avoiding floating-point emulation in
time-critical applications.

As mentioned in the previous section on
compiler optimizations, wherever base-2 fixed-
point constants are used, teft and right bit shift
operations can be implemented. This is one of the
added benefits of using fixed-point math. Below is
an example where bit shifting is used in place of a
machine multiply.

~

576

Code:
static unsigned int i, j, k;

static void example(void)
{

I
i = j * k l32 ;

Assembler Output:
move.1 -.S13j, dO ; places j in register
mulu.1 -.sl4-k, dO ; machine multiply
1sr.l #5, dO ; performs right shift
move.1 do, 3 1 2 - i
rtS

Floating-point emulation causes the
generated code to make a function call to the
floating-point libraries. Many operations are
performed to set up the registers before the
floating-point library function is called. The setting
up of these registers is compiler specific. Shown
below is an example of floating-point multiply
being performed and the assembly code it
generates.

Code:
static float f, g, h;

void Example(void)
{

1
f = g * h ;

Assembler Output (30 clk + fmul$ call -450 clk):
Idy h ; compiler-specific loading registers
Idd h+2
Idx #g
jsr fmul$; floating-point library call
sty f ; compiler-specific saving result
std f+2
rtS

Using fixed-point operations causes the
compiler to execute the built-in machine
instructions instead of making special library
calls. The number of clock cycles necessary to
perform the multiply is much less than the
floating-point example above. Shown below is an
example of the same multiply code as above
except the operation is performed using non
floating-point numbers. Notice the time difference

in clock cycles compared to the previous floating-
point example.

Code:
static unsigned int j, k, n;

void Example(void)
{

I
j = k * n ;

Assembler Output (27 clk):
ldab n
ldaa k
mu1
stab j
rtS

Fixed-point math involves representing
floating-point numbers with integers. For
instance, if a 16-bit integer is used to represent
engine speed, and scaling for engine speed was
1/4 RPM, a number of 22 in the integer engine
speed would represent 5.5 RPM. Wherever
engine speed is used in the code, its scaling of 1/
4 would have to be considered in calculations and
comparisons. If you were to compare it to an
engine speed limit that had a scaling of 1/8 RPM,
then you would have to adjust the scaling of the
engine speed to 1/8 by multiplying the engine
speed integer by 2. The example below shows a
simple speed multiplied by time operation. The
calculation becomes complex because of the
scaling conversion to put the distance in the
proper scaling of 1/128 miles. Even though the
calculation appears to be very complex, the
compiler optimizer evaluates the constant
expression and converts it to a single number.

Code:
#define SPD-SCALE 4.0 P Speed 1/4 MPH */
#define TIME-SCALE 2.0 /* Time 1/2 second */
#define DIST-SCALE 128.0 P Dist 1/128 mile */
#define SEC-IN-HR 3600.0 P 3600 seclhour */

extern unsigned int dist, spd, time;
void Example(void)
{

dist = spd * time /
(unsigned int)(SPD-SCALE * TIME-SCALE *

SEC-IN-HR / DIST-SCALE);
1

Assembler Output:

m0ve.w -spd, dO
mu1u.w -time, dO
divul.1 #225, dO
m0ve.w do, dist
rtS

; preprocessor evaluates

There are some things to watch out for if you
decide to use fixed-point instead of floating-point.
The equations and code doing comparisons
between unlike scaled numbers will become
complicated. The scaling of the fixed-point
numbers has to be considered wherever they are
used. It is best to come up with a system of
defining the scaling of widely-used system
variables and stick with it. For instance, if the
measurement being done to determine engine
speed is only accurate to 1/4 RPM, define
ENG-SPD-SCALE; as 4.0 through the use of a
#define and make it accessible to any source file
that needs to manipulate anything around engine
speed. Use this scale factor for all engine speed
related parameters to help keep the math
complexity to a minimum.

Another item to watch out for is casting of fixed-
point numbers. If two 16-bit integers are multiplied
and placed in a 32-lbit result, it may be necessary
to cast the 16-bit numbers to a 32-bit number.
This will let the conipiler know to keep the 32-bit
result instead of chopping off the first 16 bits. The
ANSI C standard defines that the result is based
on the numbers being multiplied, added, or
subtracted, not the size of the result.

The last item to watch out for is making sure
that you are truly using fixed-point numbers.
Since the pre-compiler will evaluate constant
expressions, constants can be floating-point
numbers. Remember, though, to cast the result of
these constant expressions to fixed-point
numbers. Failure to do so will cause the compiler
to call a floating-point library function. Many
compilers allow the removal of the floating-point
libraries from being pulled in by the linker.
Removing the floating-point libraries will generate
linker errors when the libraries are not found, so
you can quickly s8ee which module is using
floating-point math and correct it.

577

GENERAL USER OPTIMIZATIONS

This section discusses techniques a
programmer can use to improve coding efficiency.
These items directly effect the way the compiler
handles your code, and helps it to make further
optimizations. The optimizations are listed as
single entities, so that different ones can be used
or not used. Some of the optimizations listed are
specific to the size of platform, with a “small”
platform being 8-bit or smaller, and a “large”
platform being 32-bit or larger. A 16-bit platform
could fit into either category, so it is important to
try the recommendations out to see what works
best on your platform.

One user optimization is to set a direction for
development, as far as optimizing for speed or for
code size, and to what degree. This decision will
depend on the current capabilities of your
processor and platform, and the ease to expand
the processor or memory. After a direction is
chosen, then all programmers on the project can
program with the same end result in mind.

On smaller size microprocessors, it is
important to choose the right data definition for
the job if optimizing for speed. Try to use the base
unit or smaller size of the microprocessor
wherever possible, so the compiler can take
advantage of using fast registers and built-in
machine opcodes. The data listed below gives a
relative sample of the length of time necessary to
do multiplication and division operations on an 8-
bit platform. This will be, of course, compiler
dependent since the compiler will have to pull in
special libraries to do the operations. This
optimization can only be used if the accuracy and
range of the data used is acceptable.

8-bit multiply - 15 microseconds
16-bit multiply - 160 microseconds
32-bit multiply - 297 microseconds

8-bit divide - 85 microseconds
16-bit divide - 277 microseconds
32-bit divide - 6685 microseconds

If optimizing for speed, look for the opportunity
to inline functions if the compiler doesn’t already
optimize for it. lnlining functions places the code
block of the function directly in place of the called

function. This eliminates the process of pushing
and pulling data off the stack. Local functions can
then be added to a file to help organize the code
without worrying about the extra time it takes to
call a function. The negative impact of performing
this optimization is when the inlined function is
called more than once, resulting in increased
code size.

If optimizing for speed, avoid using pointers or
taking the address of variables. This limits the
compiler in using fast registers for the
manipulation of data. Using pointers and de-
referencing also uses extra steps in the compiled
code to determine the location of the data before
accessing it. The example below shows an
example of data accessed through the use of a
pointer, and data being accessed without a
pointer. This will increase code size, and may also
drive duplication of code. If optimizing for code
size, it becomes more important to use pointers
when performing operations on like sets of data.
This will keep duplication of code at a minimum.

Code using pointer: Assembler Output (34 clk):

extern char x, y; ldab ‘y’
extern char *ptr[20]; clra

asld
void Example(void) addd #ptr
{ xgdx

x = *ptr[y]; Idx 0,x
1 ldab 0,x

stab ‘x’
rtS

Code without pointer: Assembler Output (13 clk):

extern char x, data;

void Example(void) rtS

{

I

ldab data
stab ‘x’

x = data;

On smaller size microprocessors, when
optimizing for speed, avoid the use of function
arguments wherever possible. Use of function
arguments causes parameters to be pushed and
pulled off the stack wherever they are used. Try

578

re-structuring the code so that static variables are
shared between the two functions if local to a file,
or use global variables if not within a file. Creation
of global variables may be considered a poor
structured design practice, but this may be an
appropriate trade off.

On larger size microprocessors, when
optimizing for speed, it is not necessary to avoid
function arguments all together. Depending on
the compiler used, it may allocate registers
specifically to function argument passing. Data to
be passed will be placed in these registers, for
quicker access by the called function. This
eliminates the need to use the stack for the
arguments. The compiler will only be able to use
these registers if the data being passed is equal
to or smaller than the register size of the
microprocessor. I f optimizing for speed,
remember there are also only a limited number of
these registers available, so it still may become
necessary to use static file variables or global
variables for data sharing between functions as
discussed in the previous paragraph.

On smaller size microprocessors, where the
number of registers is limited, declaring local
variables as “static” may improve the execution
speed of the code as well as decrease the size of
the code. When the number of registers is limited,
declaring variables as “static” gives them a fixed
location in memory. This helps eliminate the
variable being used in the stack space, and
speeds up access to the variable. If it is non-
static, then the code may have to push and pull
items from the stack to access it. The example
below shows how the assembly code is
generated with a local variable as static and the
other as non-static. This will have a definite
negative impact to the amount of RAM used,
since you are now using a fixed memory location.

Code with local var: Assembler Output (23 clk):

unsigned char k, n; des

void Example(void)
{ tsx

unsigned char j; stab 0,x
j = k + n ; ins

1 rtS

ldab n
addb k

Code with static var: Assembler Output (14 clk):

unsigned char k, n; ldab n
addb k

, void Example(void) stab j
rtS

static unsigned char j;
j = k + n ;

{

I
On larger size microprocessors, it may not

make sense to declare items as static. Larger size
microprocessors have a greater availability of fast
registers. The compiler will allocate a number of
these for local variables. These larger
microprocessors can then perform the required
operations without going out to the RAM space
and placing this data on the stack. The number of
local variables that can be declared using these
registers is compiler and microprocessor specific.
Declaring a number of local variables and then
checking the asslembly output will show the
number available. Based on this number, you
may wish to have! the most often used locat
variables declared as non-static to use the
registers, and the others to be declared as static.
This will have a negative impact to the RAM size
as discussed in the previous paragraph, but may
improve speed and overall ROM code size.

If optimizing for code size, it is important to
develop a standard set of base library functions
that can be used by all the programmers. This
would possibly include a standard filter algorithm,
a standard searching algorithm, etc. Write one
algori thm that f i ts a l l the needs of the
programmers. If a programmer needs a filtering
routine for 32-bit nlumbers, and another needs
one for 16-bit numbers, write a single routine that
processes both 16- and 32-bit numbers. This
would have a negaitive impact to code speed if
your microprocessor cannot perform 32-bit
operations as quicklly as 16-bit operations.

Another user optimization is loop unrolling.
This is unnecessary if your compiler automatically
does loop unrollingi when optimizing for speed.
Loop unrolling is the process of taking looped
code and repeating the number of iterations of
that code without looping. This would increase
code size but helps to increase the speed. If you

579

have to manually unroll the loops in your code it
also makes the code less readable and harder to
maintain. The best way to unroll loops is have
your compiler take care of it for you, so the code
can be left with the “for” and “do-while” loops left
in. There is usually an iteration count the
optimizer uses to determine if the loop should be
unrolled, such as three or less iterations. This
number is sometimes a user specified option.

The last user optimization helps the compiler
optimizer directly. Consider making use of the
keyword type-qualifiers “volatile” and “const” in
front of declared variables wherever possible.
This helps the compiler to determine the type of
data when optimizing. Using the keyword
“volatile” will tell the compiler to re-access the
data type wherever it is used in the code. Leaving
this keyword out may drive the compiler to access
the data once at the start of the code block and
place the data in a register. The compiled code
will then reference this register wherever it is used
in the code instead of the actual data location.
Using the keyword “const” will help the compiler
to make memory optimizations. Many compilers
will keep declared constants in read only memory,
rather than RAM. Pointers declared as constant
will also help the compiler to not continually re-
evaluate where a pointer is pointing before it is
used. The keywords “volatile” and “const” can be
interpreted differently depending on the compiler
used, so check how they are used on your
platform.

S

The user optimizations that were discussed in
the previous section should be considered as
separate Optimizations to make based on the
platform being used. They should be utilized in
conjunction with having a good compiler
optimizer. It is also important to determine if fixed-
point math can be used as opposed to floating-
point emulation math. Evaluating all three of
these issues will get you on your way writing C
code with optimizing principles in mind.

Since C is considered a relatively “low-level”
language, it is important to look at the assembler
output from the C compiler and look for
bottlenecks. Sometimes the bottlenecks and

~

580

delays may not be require rewriting the code, but
may provide valuable information for the next
code iteration. Sometimes restructuring of the
code will also aid the compiler’s optimization
algorithm, producing very positive results.

The suggestions and ideas presented in this
paper should be tried out on your particular
platform and compiler. It is also important to
temper some of the recommendations with the
way your project’s code is structured. By far the
best and easiest way to optimize your code is
having your compiler do it for you. It is also
important to determine if fixed-point can be used
as opposed to floating-point emulation. Last of all,
do your best while coding to keep code size or
speed in mind and make efficient use of the stack,
registers, and CPU bandwidth.

