
U P C

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Disseny i Programació

de Sistemes Electrònics
@

Low level math libraries
Fixed point iteration and polynomial expansions

Jordi Bonet-Dalmau

March 23, 2020

During the Embedded Systems course we will talk about some of the problems related with
the use of finite-length arithmetic. Rounding or truncation at some point of an arithmetic
operation is necessary to satisfy the wordlength requirements of multipliers, data memory,
interfaces... Some of these problems are catastrophic cancellation and error accumulation
when using IIR filters or adding a large set of numbers. Binary tree summation, compensated
summation or error spectrum shaping (ESS) are different techniques to reduce the numerical
impact of these problems avoiding an increase in the wordlength and so a higher computational
cost.

Here we will deal with an issue related with the complexity with which some operations in
fixed or floating point numbers are executed. Microcontrollers, like the AVR of the Arduino you
are used to work, have a few set of arithmetic instructions. When programming in languages
like C or Python you use any kind of operation beyond the strictly hardware implemented
addition and multiplication. Have you ever wondered how a division, a square root or a
trigonometric function is performed? These operations are made thanks to the math libraries
available for the AVR. When using a microcontroller with limited computational capacity,
speed can be more important than accuracy. Next we will show some of the most common
techniques used by these libraries.

1 Newton’s method

The Newton’s method is used to successively obtain better approximations to the roots of a
function f(z): i.e. the values of z that makes f(z) = 0. This method uses the knowledge of
the value of the function at z0, f(z0), and its derivative at this point, f

′
(z0), to compute the

value z1 at which the tangent of f(z) at (z0, f(z0)) intersects with the z-axis:

z1 = z0 −
f(z0)

f ′(z0)
. (1)

When f(z) is a linear function the tangent is equal to the function and so z1 will be the root. If
f(z) is not a linear function, then z1 will a better approximation to the root than z0, provided
that z0 is close enough to the root. This way, we can compute f(z1) and its derivative at this
point, f

′
(z1), to compute z2 that will be closer to the root than z1:

z2 = z1 −
f(z1)

f ′(z1)
. (2)

1

A geometrical illustration of how the Newton’s method works to find out the roots of f(z) =
z2 − 2 is showed in Figure 1. Starting at z0 = 0.5, f(z0) = −1.75 and f

′
(z0) = 1 are used

to draw the tangent at (z0, f(z0)). The point z1 = 2.25 where this tangent intersects with
the z-axis could be the root, f(z1) = 0, we are looking for. In fact, as stated previously, it
would be the root if f(z) were a linear funtion. As this is not what happens, f(z1) = 3.062
and f

′
(z1) = 4.5 are used to draw the tangent at (z1, f(z1)), and find out its intersection with

the z-axis: z2 = 1.569. Although z2 is not a root, f(z2) = 0.4632, it is much closer to the root√
2 ' 1.4142 we are looking for than the previous values of z.

−1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1

0

1

2

3

4

5

X: 2.25
Y: 3.062

X: 1.569
Y: 0.4632

X: 0.5
Y: −1.75

f(z)

iteration

Figure 1: A geometrical illustration of the Newton’s method. f(z) = z2 − 2 and z0 = 0.5.

2 Fixed point iteration

The Newton’s method is based on iteratively computing

zn+1 = zn −
f(zn)

f ′(zn)
, (3)

starting with z0 as an initial guess, hoping that the sequence zn will converge to z, which is a
fixed point (here comes the name fixed point iteration) of f :

z = z − f(z)

f ′(z)
. (4)

Usually we consider that the fixed point is reached when the difference between zn+1 and zn
is lower than a selected threshold:

| zn+1 − zn |< ε. (5)

Task 1. Use the Newton’s method to find out the roots of f(z) = z2 − x. Consider that
the fixed point is reached when the relative difference between zn+1 and zn is lower than a
threshold th, i.e. ∣∣∣∣zn+1 − zn

zn+1

∣∣∣∣ < th. (6)

Note that the absolute error shown in equation 5 is well suited for fixed-point arithmetic,
while the relative error shown in equation 6 is well suited for floating point arithmetic. If we

2

U P C

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Disseny i Programació

de Sistemes Electrònics
@

choose equation 6 we will have to deal with a discontinuity at z = 0, i.e it can not be used if
one of the roots of f(z), or any zn, is (close to) zero.

The following code in Octave is used to find out the roots of f(z) = z2 − 2 with th = 10−6.

%% computing the r o o t s o f f (z)=zˆ2−x

% paramete r s
x=2; z0=8; th=1e−6;%th i s the t h r e s h o l d

% i n i t i a l i z a t i o n o f v a r i a b l e s
Z=[z0] ; i =0;

% i t e r a t i o n
do
i=i+1
z0=z0/2+x/2/ z0
dz=(z0−Z(end))/ z0 ;
Z=[Z z0] ;
pause
u n t i l abs (dz)< th

% p l o t o f the i t e r a t i o n
n=1: l ength (Z) ;
p lo t (n , Z , ’ o− ’ , n , ones (1 , l ength (Z))∗ sq r t (x) , ’− ’)

Try different values of z0. What is the difference between z0 > 0 and z0 < 0? What is the
difference between z0 >

√
2 and 0 < z0 <

√
2? And the obvious questions: What happens

when z0 = 0? Why? How can it be solved? What happens when z0 =
√

2?

Task 2. Use the Newton’s method to find out the roots of f(z) = 1/z − x. First consider
x = 3 and z0 = 0.5. Next, try different values of z0. What is the difference between z0 > 0
and z0 < 0? What is the difference between 2/3 > z0 > 1/3 and 0 < z0 < 1/3? What is the
difference between z0 > 2/3 and 0 < z0 < 2/3? And the obvious questions: What happens
when z0 = 0? What happens when z0 = 1/3? What happens when z0 = 2/3?

Task 3. Find the fixed point iteration that a low-level math library could use to compute the
inverse of a number using only addition and multiplication operations. Given a number x,
compute z = 1/x following the next steps:

a. Manipulate z = 1/x in order to find out a suitable function f(z) = 0.

b. Use the Newton’s method to find out the roots of f(z) using equation 3.

c. Verify that only addition and multiplication operations are involved in equation 3. How
many additions and multiplication operations are needed in each iteration?

d. Determine a method to automatically initialize z0 and start a fixed point iteration to
successively compute zn+1 until no changes in the 5 more significant digits are observed.

e. As a test, consider x = 7 and z0 = 1/4 or z0 = 1/8.

3

Task 4. Repeat the steps in Task 3 to find the fixed point iteration that a low-level math
library could use to compute the root of a number using only addition and multiplication
operations, i.e. given a number x, compute z =

√
x.

a. If an operation different than addition and multiplication appears in equation 3, maybe
you could do this operation as an iteration in which only addition and multiplication
operations are needed. Hint: if and inversion of zn is needed to compute each zn+1, you
could use results of Task 3 to compute 1/zn.

b. Determine a method to automatically initialize z0 and start a fixed point iteration to
successively compute zn+1 until no changes in the 5 more significant digits are observed.

c. Decide also the accuracy of the inverse computation that appears in each iteration: Hint:
You only need to compute 1/zn with high accuracy when you are close to the solution√
x.

d. As a test, consider x = 3 and z0 = 1 or z0 = 2.

3 Polynomial expansion

One particular polynomial expansion is obtained using Taylor series to represent a function
as an infinite sum of terms that are calculated from the values of the function’s derivatives at
a single point.

Given a function g(z), we can compute its value as

g(z) =
∞∑
n=0

g(n)(z0)

n!
(z − z0)n, (7)

where gn(z0) is the n-th derivative of g(z) evaluated at z0. The advantage of this series in low
math libraries is that any function can be computed using just addition and multiplication op-
erations assuming that the values g(n)(z0) and 1/n! are computed in advance. To immplement
this idea we have to truncate the summation that appears in equation 7 as

g(z) ≈
N∑

n=0

g(n)(z0)

n!
(z − z0)n. (8)

The error in this approximation can be bounded by Taylor’s theorem.
Let’s approximate sin(z) using equation 8 with z0 = 0 and N = 5 as

sin(z) ≈
5∑

n=0

sin(n)(0)

n!
(z)n. (9)

The odd derivatives g(n)(z) are (−1)
n−1
2 cos(z) and the even derivatives are (−1)

n
2 sin(z). The

odd derivatives evaluated at z = z0 are (−1)
n−1
2 and the even derivatives zero. So, equation 9

is expressed as

sin(z) ≈ z − z3

3!
+
z5

5!
. (10)

The error in this approximation can be bounded to the next term of the Taylor series, i.e. z7

7! .

4

U P C

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Disseny i Programació

de Sistemes Electrònics
@

Task 5. Next consider the sin function and its truncated Taylor series.

a. Argue that the range of z that we must consider to compute any value of sin(z) is
[−π/2, π/2).

b. Compute the bounded error when N = 5.

c. Graphically represent both sin(z) and its Taylor series approximation when N = 5 in the
range [−π/2, π/2).

d. Compute the number of addition and multiplication operations needed to compute the
Taylor series approximation considering that 1/n! have been previously computed.

e. Repeat the three previous questions when N = 7.

5

	Newton's method
	Fixed point iteration
	Polynomial expansion

