
Digital Systems - 0

Pere Palà - Alexis López

iTIC http://itic.cat

February 2016



Introduction

I VHDL: VHSIC Hardware Description Language
I VHSIC: Very High Speed Integrated Circuit

I IEEE Standard (Institute of Electrical and Electronic
Engineers)

I VHDL-87, VHDL-93, VHDL-2002



std logic 1164

I Standardized package : std_logic_1164

type std_ulogic is ( ’U’,-- Uninitialized

’X’,-- Forcing Unknown

’0’,-- Forcing zero

’1’,-- Forcing one

’Z’,-- High Impedance

’W’,-- Weak Unknown

’L’,-- Weak zero

’H’,-- Weak one

’-’ ); -- Don ’t care

I This is used in almost any VHDL file

library ieee;

use ieee.std_logic_1164.all;



Example: AND gate

library ieee;

use ieee.std_logic_1164.all;

entity and_gate is

port( a, b : in std_logic;

y : out std_logic );

end and_gate;

architecture logic_and of and_gate is

begin

y <= a and b;

end;

I entity: connections to the outside world

I architecture: what it does



Identifiers

I Case insensitive: AND is the same as aNd

I Reserverd words
I entity, or, and, register, begin, ... The editor

usually highlights them!

I Only alphabetic letters (‘Aa’ to ‘Zz’), decimal digits (‘0’ to
‘9’) and the underscore character (‘ ’)

I Must start with an alphabetic letter

I May not end with an underscore character

I May not include two successive underscore characters



Example: Full Adder

library ieee;

use ieee.std_logic_1164.all;

entity full_adder is

port( a, b, c_in : in std_logic;

s, c_out : out std_logic );

end full_adder;

architecture arch_1 of full_adder is

signal temp : std_logic;

begin

temp <= a xor b;

s <= temp xor c_in;

c_out <= (a and b) or (c_in and temp);

end;

All assignments are concurrent! This is exactly the same:

s <= temp xor c_in;

c_out <= (a and b) or (c_in and temp);

temp <= a xor b;



Testing

library ieee;

use ieee.std_logic_1164.all;

entity full_adder_tb is

end full_adder_tb;

architecture behav of

full_adder_tb is

component my_adder

port(a,

b,

c_in : in std_logic;

s,

c_out: out std_logic );

end component ;

for dut : my_adder use

entity work.full_adder;

signal t_a ,t_b ,t_c_in ,

t_s ,t_c_out:std_logic;

begin

dut : my_adder port map

(a => t_a ,

b => t_b ,

c_in => t_c_in ,

s => t_s ,

c_out => t_c_out );

process

begin

t_a <= ’0’;

t_b <= ’0’;

t_c_in <= ’0’;

wait for 1 sec;

t_a <= ’0’;

t_b <= ’1’;

t_c_in <= ’0’;

wait for 1 sec;

wait;

end process ;

end behav ;



Testing/2

I $ ghdl -a full_adder.vhd

I $ ghdl -a full_adder_tb.vhd

I $ ghdl -e full_adder_tb

I $ ghdl -r full_adder_tb --vcd=full_adder_tb.vcd

I $ gtkwave full_adder_tb.vcd &


