
Digital Systems

Final examination. June 13, 2022

Time limit: 120 minutes.

Explain what you want to do and how you want to do it before doing anything else.

1 From VHDL code to a state diagram (20 %)

a) Draw the block diagram of a typical synchronous (clock-driven) FSM that would be synthe-
sized from a VHDL code made of one synchronous process and two combinational process).

b) Draw the graph (or state diagram) of a synchronous (clock-driven) FSM described by

library ieee;

use ieee.std_logic_1164.all , ieee.numeric_std.all;

entity fsm is

port(clk , s_coin , flag_60 , flag_600 : in std_logic;

s_temp : in std_logic_vector (6 downto 0);

s_fan , s_heater , s_drum , s_right : out std_logic);

end;

architecture arch of fsm is

type multiplier_state is (I, RH , LH , R, L);

signal current_state : multiplier_state := I;

signal next_state : multiplier_state;

begin

state_reg : process(clk) is

begin

if rising_edge(clk) then current_state <= next_state;

end if;

end process;

next_state_logic : process(current_state , flag_60 ,

flag_600 , s_coin , s_temp) is

begin

next_state <= current_state;

case current_state is

when I =>

if s_coin=’1’ then next_state <= RH;

end if;

when RH =>

if flag_600=’1’ then next_state <= I;

elsif flag_60=’1’ and unsigned(s_temp)<=80 then

next_state <= LH;

elsif flag_60=’1’ and unsigned(s_temp)>80 then

next_state <= L;

elsif flag_60=’0’ and unsigned(s_temp)>80 then

next_state <= R;

end if;

when LH =>

if flag_600=’1’ then next_state <= I;

elsif flag_60=’1’ and unsigned(s_temp)<=80 then

next_state <= RH;

elsif flag_60=’1’ and unsigned(s_temp)>80 then

next_state <= R;

elsif flag_60=’0’ and unsigned(s_temp)>80 then

next_state <= L;

end if;

when R =>

if flag_600=’1’ then next_state <= I;

elsif flag_60=’1’ and unsigned(s_temp)>=70 then

next_state <= L;

elsif flag_60=’1’ and unsigned(s_temp)<70 then

next_state <= LH;

elsif flag_60=’0’ and unsigned(s_temp)<70 then

next_state <= RH;

end if;

when L =>

if flag_600=’1’ then next_state <= I;

elsif flag_60=’1’ and unsigned(s_temp)>=70 then

next_state <= R;

elsif flag_60=’1’ and unsigned(s_temp)<70 then

next_state <= RH;

elsif flag_60=’0’ and unsigned(s_temp)<70 then

next_state <= LH;

end if;

when others => null;

end case;

end process;

output_logic : process (current_state) is

begin

s_fan <= ’1’; s_heater <= ’1’; s_drum <= ’1’; s_right <= ’1’;

case current_state is

when I => s_fan <= ’0’; s_heater <= ’0’;

s_drum <= ’0’; s_right <= ’0’;

when RH => null;

when LH => s_right <= ’0’;

when R => s_heater <= ’0’;

when L => s_heater <= ’0’; s_right <= ’0’;

when others => null;

end case;

end process;

end;

2 An edge detector of asynchronous signals (10 %)

Design a falling edge detector for asynchronous signals.

a) First draw the block diagram.

b) Next describe it in VHDL.

3 Unregistering a signal (10 %)

The following VHDL code shows two registered signals: a is of type unsigned(2 downto 0)

and flag is of type std logic.

process(clk) is

begin

if rising_edge(clk) then

flag <=’0’;

if a=5 then a<=(others=>’0’);

else a<=a+1;

end if;

if a=4 then flag <=’1’; end if;

end if;

end process;

a) How many 1-bit flip-flops are used to synthesize this code?

b) Reduce this number unregistering some signals without changing the functionality of the
circuit. Describe in VHDL the new circuit.

c) How many 1-bit flip-flops are used in this new synthesis?

4 Designing a time counter (20 %)

We want to describe in VHDL a counter of seconds (up to 59) and minutes (up to 59) following the
structure of the next block diagram, where the signals flag s and flag m are an enable signal
to the next block. The frequency of the signal clk is 10 Hz.

Figure 1: Block diagram of the time counter.

a) First, identify the inputs and outputs (and its size) of the whole entity named counter.
These inputs and outputs are of type std logic or std logic vector.

b) Next, describe the whole entity using one process for each one of the three blocks.

5 Designing a new AVR instruction (15 %)

Consider a modified Mini AVR that only has the following set of instructions.

• LDI Rd,K; Opcode: 1110 KKKK dddd KKKK

• MOV Rd,Rr; Opcode: 0010 11rd dddd rrrr

• IN Rd,A; Opcode: 1011 0AAd dddd AAAA

• OUT A,Rr; Opcode: 1011 1AAr rrrr AAAA

• LD Rd, X; Opcode: 1001 000d dddd 1100

• ST X, Rr; Opcode: 1001 001r rrrr 1100

We want to add a new instruction that stores an 8 bit constant (a literal) to a an output with
the following syntax:

• OUTI A,K

a) Propose an Opcode compatible with the existing set of instructions. Point out the range of
each of the operands.

b) Considering the block diagram of Figure 2, highlight the signals and blocks that will be
used by this instruction and add, if necessary, new signals and blocks.

c) Which blocks of this diagram will be modified to consider the new instructions? Briefly
explain these modifications.

6 Understanding assembler code (15 %)

The Mini AVR architecture of Figure 2 has in its ROM the following code:

0. NOP

1. LDI r17 ,0x0F

2. IN r16 ,1

3. EOR r16 ,r17

4. NOP

5. BRNE -4

6. RJMP -1

a) Draw a waveform with the first 8 clocks after a general reset 1, considering that the
asynchronous input port A1 2, changes from 0x00 to 0x0F immediately after the first
rising clock. Draw the value of:

• program counter: pr pc

• port A1 asynchronous input

• r16 register

• Z flag of the status register

1This general reset is not shown in Figure 2.
2See Figure 2.

ROM:

pr_op

16

d_reg
4

RegW:
8nx_reg

4

r_reg

4

alu_in_a

clk

nx_pc
8

pr_pc
8

+

clk

nx_SR
(Z,C)

2

pr_SR
(Z,C) 2

clk

alu_out 8

k8

out_muxControl:

reg_we

alu_op ALU:

8

88

+1

k_jmp

k_jmp

8

mem_adr
16

RAM:
8

ram_we

x

8

ram_q

clk

clk

asynchronous
inputs

synchronous
inputs

alu_in_b

port_we

cl
k

clk

port_adr 4

outputs

3

Figure 2: Mini AVR block diagram.

7 From assembler to opcode (5 %)

a) Knowing the syntax and opcode of the following instructions,

• LDI Rd,K; Opcode: 1110 KKKK dddd KKKK

• OUT A,Rr; Opcode: 1011 1AAr rrrr AAAA

and considering the next assembler instructions

0. LDI r30 ,0xAA

1. OUT 8,r30

indicate the bits in the first two positions of the Mini AVR program ROM.

8 Storing a literal to RAM (5 %)

a) Write the assembler instructions needed to store the value 55 in the position 512 of the
Mini AVR data RAM.

	From VHDL code to a state diagram (20 %)
	An edge detector of asynchronous signals (10 %)
	Unregistering a signal (10 %)
	Designing a time counter (20 %)
	Designing a new AVR instruction (15 %)
	Understanding assembler code (15 %)
	From assembler to opcode (5 %)
	Storing a literal to RAM (5 %)

