Digital Systems
Final examination. June 15, 2021

Time limit: 120 minutes.

1 A Tumble dryer (40%)

Consider a tumble dryer with the following simplified operation. When this tumble dryer is
powered on, it waits for a user to make a coin payment. When the coin payment is validated, the
drum of the machine starts moving to the right, a fan moves air into the drum through a heater
and the heater is turned on. The fun and the drum never stop moving, although each minute
the drum changes the direction of rotation. The heater is turned off when the temperature of
the air is higher than 80°C and it is turned on again when the temperature is lower than 70°C.
After 10 minutes of operation the machine stops and a new payment can be made.

In order to synthesize a hardware that controls the operation of the machine, read the next
explanation, which explicitly consider input and output signals.

e When the machine is powered on, it waits for a coin payment.The machine can not start

its operation until a coin payment of 1 euro is made. When a valid coin payment is made,
the coin validator generates the signal s_coin that is high during one clock. This payment
allows the machine to operate during 10 minutes. No more coin payments are permitted
until the machine finishes its operation.

The temperature is read from the signal s_temp that is coded as an unsigned number that
can take values in the range 0-100°C. You can decide the length of this signal.

The fan is turned on when the signal s_fan is high.
The heater is turned on when the signal s_heater is high.

The drum moves when the signal s_drum is high. It moves to the right when the signal
s_right is high and to the left otherwise.

Draw the graph of a synchronous (clock-driven) FSM in which each output depends only
on the state. I suggest to use a single FSM, although it is tempting to use independent
FSM to control the heater and the drum. Use two counters driven by a 1Hz clock: one to
measure 1 minute and the other 10 minutes.

Describe the previous FSM in VHDL code. Help yourself to the following VHDL sketch. Use
one process statement to describe the sequential part, and one or two more process
statements, as you like, to describe the combinational part.

library ieee;

use ileee.std_logic_1164.all, ieee.numeric_std.all;

entity fsm 1is
port (clk : in std_logic;
:in .. L)

out std_logic);
end ;

architecture arch of fsm is
type multiplier_state is (...);

signal current_state : multiplier_state

signal next_state : multiplier_state;
begin

process (clk) is

begin

end process;

2 Registering or not registering (20 %)

a) Describe the block diagram of Figure 1 in VHDL. Be careful when describing the different

combinational and sequential parts.

1 0 next_c c

ck—E 7 —

if =— cpl

if =— cp2

Figure 1: Block diagram of design 1. The signal c can take integer values from 0 to 15. The
signals cpl and cp2 can take logical values '0’ or ’1’. All numbers in the figure are
coded in decimal. The block with the clk signal is a register.

b) Draw a waveform with the first 10 clocks after reseting c to zero !. Draw the value of:

e cC
e next._c
e cpl
e cp2

c) Next describe the block diagram of Figure 2 in VHDL, in such a way that the waveforms of

the signals c, cpl and cp2 of both designs are the same

e)
— Cp
clk &I cp2

2

Figure 2: Block diagram of design 2. The block with the clk signal must be described with a

single process(clk).

d) Even if both designs have the same functionality, point out any difference that can make
one design more suitable than the other in terms of, for example, the use of resources in an

FPGA.

You don’t have to consider the reset signal in the previous or next sections.

2Consider that the delay of the combinational blocks are insignificant.

3 Mini AVR: Branch (15 %)

The Mini AVR architecture of Figure 3 has in its ROM the following code:
0. LDI r20,xFF

1. LDI r21,x02
2. ADC r20,r21
3. BREQ +2
4. LDI r20,xFD
5. RJMP -4
6. RJIMP -1
reg_we ,[RegW: 8
nx_reg 8 — -
' y v '% Y
Control:(— ¢t mux clk—p /A /
, 8 x 11 1 o
7 > / T4
pr_op ! d reg
. r reg 18 T8
alu_in_a alu_in_b
. Y Y
pr_pc . k_jmp alu_op 3 [ALU:
T pr SRR ’ ;
ZC) L2
(2.C) alu_out 87
I
A A
A A
81 21
nx_pc
clk clk nx_SR
Z,C)
g o @
4 JepKJmP

Figure 3: Mini AVR architecture with relative jumps.

a) Draw a waveform with the first 10 clocks after a general reset 3. Draw the value of:
® program counter: pr_pc
e 120 register
e C flag
e Z flag

b) Describe the value of all the significant signals in Figure 3 just before the rising edge of the
seventh clock of the previous waveform.

3This general reset is not shown in Figure 3.

4 Mini AVR: RAM (15 %)

In the last class about the Mini AVR we added 1kB of RAM. To do this we introduced the concept
of indirect addressing.

a) Explain how this concept is implemented in the Mini AVR.
b) Compare with some other solutions.

c¢) Justify the need of the solutions that have explained in the two previous questions in terms
of the length of the opcode 4 and the size of the RAM.

5 The importance of the sensitivity list (10 %)

Write a simple process to explain the importance of the sensitivity list. Consider different
sensitivity lists that for a given set of inputs generate different output or outputs. Draw an
illustrative waveform.

“Six bits of the opcode are used to indicate the operation.

	A Tumble dryer (40%)
	Registering or not registering (20 %)
	Mini AVR: Branch (15 %)
	Mini AVR: RAM (15 %)
	The importance of the sensitivity list (10 %)

