
Digital Systems

Mid-semester examination. April 28, 2021

Time limit: 90 minutes.

1 Problem: A Finite State Machine (50%)

The graph in Figure 1 describes a synchronous (clock-driven) FSM.

Figure 1: Graph of a synchronous (clock-driven) FSM.

a) Describe the previous FSM in VHDL. Help yourself to the following VHDL sketch. Use one
process statement to describe the sequential part, and one or two more process state-
ments, as you like, to describe the combinational part.

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

port(clk : in std_logic;

event : in std_logic_vector (1 downto 0);

y1,y2,y3 : out std_logic);

end;

architecture arch of fsm is

type multiplier_state is (A, B, C, D);

signal current_state : multiplier_state := A;

signal next_state : multiplier_state;

begin

process(clk) is

begin

...

end process;

...

end;

b) Complete the waveform of Figure 2.

Figure 2: Clock and event input of the FSM.

2 Problem: Pipelining of FIR filters (50 %)

In this problem we are going to consider the so called pipelinig tecnique applied to FIR digital
filters (it doesn’t matter if now you don’t know what a FIR filter is). Figure 3 shows the block
diagram of a FIR filter (of memory two) in which the output y can be written as a combination of
the current input x0 and the two previous values of this input, x1 and x2: y = a∗x0+b∗x1+c∗x2.
It is worth noting that each clock period a new output is computed.

clk
a b c

x x0 x1 x2

y

Figure 3: Block diagram of a FIR filter of memory two.

The VHDL description of this block diagram is listed below. Note that different signals have
different lengths.

library ieee;

use ieee.std_logic_1164.all , ieee.numeric_std.all;

entity fir is

port(clk : in std_logic;

x : in std_logic_vector (7 downto 0);

y : out std_logic_vector (7 downto 0));

end;

architecture arch of fir is

signal x0 ,x1 ,x2 : signed (7 downto 0):=(others=>’0’);

constant a : signed (3 downto 0):= to_signed (1 ,4);

constant b : signed (3 downto 0):= to_signed (-2,4);

constant c : signed (3 downto 0):= to_signed (3 ,4);

signal prod_a_x0 ,prod_b_x1 ,prod_c_x2 ,sum_1 ,sum :

signed(a’length+x0 ’length -1 downto 0);

begin

process(clk) is

begin

if rising_edge(clk) then

x0 <= signed(x);

x1 <=x0;

x2 <=x1;

y<= std_logic_vector(resize(sum ,y’length));

end if;

end process;

prod_a_x0 <=a*x0;

prod_b_x1 <=b*x1;

prod_c_x2 <=c*x2;

sum_1 <= prod_a_x0+prod_b_x1;

sum <= sum_1+prod_c_x2;

end;

a) Identify the critical path of Figure 3. Compute the maximum clock frequency fclk at which
the system can work. Consider the following delays:

• Clock to output delay, tco=8ns.

• Set-up time, tsu=2ns.

• Multiplier delay, tmult=85ns.

• Adder delay, tadd=45ns.

b) The clock frequency fclk is fixed to 7MHz by the design constraints. Draw the block
diagram and write the VHDL code that synthesize a new filter using the pipelining tecnique
(i.e. shortening the critical path adding some registers) in order to work at fclk = 7MHz.
Compare the latency of this design with the previous one.

c) Consider the new design (same delays as before): Identify the critical path. Compute the
maximum clock frequency fclk at which the system can work. If this frequency is lower
than 10MHz propose another design.

	Problem: A Finite State Machine (50%)
	Problem: Pipelining of FIR filters (50 %)

