UNIVERSITAT POLITÈCNICA DE CATALUNYA

Sinusoidal Stady-State Response of Discrete-Time Systems
 Processament Digital del senyal - Enginyeria de Sistemes TIC

Jordi Bonet-Dalmau
October 13, 2023

Contents

1 Motivation 1
2 A particular case: the moving average filter 1
2.1 Computation of the coefficients 3
2.1.1 Computation of A_{1} 3
2.1.2 Computation of A_{2} 4
2.1.3 Computation of A_{3} 5
2.2 Time domain response 5
3 A general result 6
4 Conclusions 7

1 Motivation

This document covers the computation of the sinusoidal steady-state response (SSR) of discretetime systems (DTS).

First we compute the sinusoidal SSR for a particular filter, the moving average filter, using the Z-transform. This is done starting the computation of the general response but, before completing the computation of this general response, we discard the natural response and only compute to the end the forced response.

Next we focus on the way this response has been computed, specially on the role that the transfer function of the system $H(z)$ has in the final result, in order to obtain a general method to easily compute the sinusoidal SSR of DTS.

2 A particular case: the moving average filter

On the one hand, the moving average filter is characterized by the following relation between the input $x(n)$ and the output $y(n)$:

$$
\begin{equation*}
y(n)=\frac{1}{m+1} \sum_{k=0}^{k=m} x(n-k) . \tag{2.0.1}
\end{equation*}
$$

Note that the number of samples used to compute the output is $m+1$. The impulse response of this system can easily be obtained as

$$
\begin{equation*}
h(n)=\frac{1}{m+1} \sum_{k=0}^{k=m} \delta(n-k) \tag{2.0.2}
\end{equation*}
$$

Being the moving average filter a LTI system we use the Z-transform to obtain its transfer function

$$
\begin{equation*}
H(z)=\frac{1}{m+1} \sum_{k=0}^{k=m} z^{-k}=\frac{1}{m+1} \frac{1-z^{-(m+1)}}{1-z^{-1}} \tag{2.0.3}
\end{equation*}
$$

On the other hand, an analog sinusoidal signal in the time domain is characterized by its frequency, its amplitude and its phase. We will consider the analog signal

$$
\begin{equation*}
x_{a}(t)=\sin \left(2 \pi \mathrm{~F}_{a} t\right) u(t) \tag{2.0.4}
\end{equation*}
$$

of analog frequency F_{a}. Sampling $x_{a}(t)$ at frequency F_{s} we obtain the discrete-time signal

$$
\begin{equation*}
x(n)=\sin \left(\omega_{0} n\right) u(n) \tag{2.0.5}
\end{equation*}
$$

where $\omega_{0}=2 \pi f=2 \pi \frac{F_{a}}{F_{s}}$. The signal (2.0.5) has amplitude one. Being the moving average filter a linear filter, all the results are obtained without loss of generality. The signal (2.0.5) has the phase of a sinus. Being the moving average filter an invariant time filter, the SSR results are also obtained without loss of generality ${ }^{1}$.

Considering the Z-transform of (2.0.5)

$$
\begin{equation*}
X(z)=\frac{\sin \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}} \tag{2.0.6}
\end{equation*}
$$

as the input to the moving average filter, we can write its Z-transform response as

$$
\begin{equation*}
Y(z)=H(z) X(z)=\frac{\sin \left(\omega_{0}\right)}{m+1} \frac{\left(1-z^{-(m+1)}\right) z^{-1}}{\left(1-z^{-1}\right)\left(1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}\right)} \tag{2.0.7}
\end{equation*}
$$

A (strictly) proper transfer function is a transfer function in which the degree M of the numerator is less than the degree N of the denominator ${ }^{2}$. Otherwise, we have an improper function that can be written as

$$
\begin{align*}
Y_{I}(z) & =\frac{N_{M}(z)}{D_{N}(z)}=\frac{N_{N-1}(z)}{D_{N}(z)}+\sum_{k=0}^{k=M-N} c_{k} z^{-k} \\
& =Y_{P}(z)+\sum_{k=0}^{k=M-N} c_{k} z^{-k} \tag{2.0.8}
\end{align*}
$$

The inverse Z-transform $\left(Z T^{-1}\right)$ of the right side of (2.0.8) is easily obtained as

$$
\begin{equation*}
\sum_{k=0}^{k=M-N} c_{k} z^{-k} \xrightarrow{Z T^{-1}} \sum_{k=0}^{k=M-N} c_{k} \delta(n-k) \tag{2.0.9}
\end{equation*}
$$

[^0]Our particular response (2.0.7) is an improper function with $N=3$ and $M=m+2{ }^{3}$.
Considering again (2.0.8) and (2.0.9) we can make a first draft of the time domain response:

$$
\begin{equation*}
Y_{I}(z)=\frac{N_{N-1}(z)}{D_{N}(z)}+\sum_{k=0}^{k=m-1} c_{k} z^{-k} \xrightarrow{Z T^{-1}} y_{I}(n)=y_{P}(n)+\sum_{k=0}^{k=m-1} c_{k} \delta(n-k) \tag{2.0.10}
\end{equation*}
$$

The addition that appears on the right part of the equation lasts, in the time domain, just m samples, from $n=0$ to $n=m-1$. As we are interested in the sinusoidal SSR, we will ignore this transient response and we will focus on the time response of

$$
\begin{equation*}
Y p(z)=\frac{N_{N-1}(z)}{D_{N}(z)} \xrightarrow{z T^{-1}} y_{P}(n) . \tag{2.0.11}
\end{equation*}
$$

The $Z T^{-1}$ in (2.0.11) can be obtained with the same procedure used to compute the inverse Laplace Transform: partial-fraction expansion. A proper transfer function can be expanded in the form

$$
\begin{equation*}
Y_{p}(z)=\sum_{k=1}^{k=N} \frac{A_{k}}{1-p_{k} z^{-1}} \tag{2.0.12}
\end{equation*}
$$

where p_{k} is each one of the poles of $Y_{p}(z)^{4}$.
Looking at the denominator of (2.0.7),

$$
\begin{align*}
D_{N}(z) & =\left(1-z^{-1}\right)\left(1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}\right) \\
& =\left(1-z^{-1}\right)\left(1-e^{j \omega_{0}} z^{-1}\right)\left(1-e^{-j \omega_{0}} z^{-1}\right) \tag{2.0.13}
\end{align*}
$$

it is straightforward that the poles in (2.0.12) are $p_{1}=1, p_{2}=e^{j \omega_{0}}$ and $p_{3}=e^{-j \omega_{0}}$, and so, we can write (2.0.13) as

$$
\begin{equation*}
D_{N}(z)=\left(1-p_{1} z^{-1}\right)\left(1-p_{2} z^{-1}\right)\left(1-p_{3} z^{-1}\right) \tag{2.0.14}
\end{equation*}
$$

2.1 Computation of the coefficients

Once the coefficients A_{k} in (2.0.12) are computed, the inversion of the Z-transform of $Y_{p}(z)$ is straightforward:

$$
\begin{equation*}
y_{p}(n)=\sum_{k=1}^{n} A_{k}\left(p_{k}\right)^{n} u(n) \tag{2.1.1}
\end{equation*}
$$

2.1.1 Computation of A_{1}

But first we must compute each A_{k}. We start with A_{1}. A common approach is the following ${ }^{5}$

$$
\begin{align*}
\left.Y(z)\left(1-z^{-1}\right)\right|_{z=1}= & \left(\frac{A_{1}}{1-z^{-1}}\left(1-z^{-1}\right)\right. \\
& +\frac{A_{2}}{1-e^{j \omega_{0}} z^{-1}}\left(1-z^{-1}\right)+\frac{A_{3}}{1-e^{-j \omega_{0} z^{-1}}}\left(1-z^{-1}\right) \\
& \left.+\left(\sum_{k=0}^{k=m-1} c_{k} z^{-k}\right)\left(1-z^{-1}\right)\right)\left.\right|_{z=1} \tag{2.1.2}
\end{align*}
$$

[^1]\[

$$
\begin{align*}
\left.Y(z)\left(1-z^{-1}\right)\right|_{z=1}= & A_{1} \\
& +\left(\frac{A_{2}}{1-e^{j \omega_{0}} z^{-1}}\left(1-z^{-1}\right)+\frac{A_{3}}{1-e^{-j \omega_{0}} z^{-1}}\left(1-z^{-1}\right)\right. \\
& \left.+\left(\sum_{k=0}^{k=m-1} c_{k} z^{-k}\right)\left(1-z^{-1}\right)\right)\left.\right|_{z=1} \tag{2.1.3}\\
\left.Y(z)\left(1-z^{-1}\right)\right|_{z=1}= & A_{1} . \tag{2.1.4}
\end{align*}
$$
\]

Using (2.0.7) we write

$$
\begin{gather*}
A_{1}=\left.\frac{\sin \left(\omega_{0}\right)}{m+1} \frac{\left(1-z^{-(m+1)}\right) z^{-1}}{\left(1-z^{-1}\right)\left(1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}\right)}\left(1-z^{-1}\right)\right|_{z=1} \tag{2.1.5}\\
A_{1}=\left.\frac{\sin \left(\omega_{0}\right)}{m+1} \frac{\left(1-z^{-(m+1)}\right) z^{-1}}{\left(1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}\right)}\right|_{z=1}=0 . \tag{2.1.6}
\end{gather*}
$$

Going backward, we see that the pole $p_{1}=1$ in the denominator of $H(z)$ in (2.0.3) is canceled by the zero $z_{1}=1$ in the numerator. The pole p_{1} appears in the denominator because we have used a compact formulation to write $H(z)$. If we had previously made this cancellation, there will be no pole p_{1}. This explanation is coherent with the computed result $A_{1}=0$.

2.1.2 Computation of A_{2}

The computation of A_{2} follows the same approach.

$$
\begin{align*}
& \left.Y(z)\left(1-e^{j \omega_{0}} z^{-1}\right)\right|_{z=e^{j \omega_{0}}}=\left(\frac{A_{1}}{1-z^{-1}}\left(1-e^{j \omega_{0}} z^{-1}\right)\right. \\
& +\frac{A_{2}}{1-e^{j \omega_{0}} z^{-1}}\left(1-e^{j \omega_{0}} z^{-1}\right)+\frac{A_{3}}{1-e^{-j \omega_{0} z^{-1}}}\left(1-e^{j \omega_{0}} z^{-1}\right) \\
& \left.+\left(\sum_{k=0}^{k=m-1} c_{k} z^{-k}\right)\left(1-e^{j \omega_{0}} z^{-1}\right)\right)\left.\right|_{z=e^{j \omega_{0}}} \tag{2.1.7}\\
& \left.Y(z)\left(1-e^{j \omega_{0}} z^{-1}\right)\right|_{z=e^{j \omega_{0}}}=A_{2} \\
& +\left(\frac{A_{1}}{1-z^{-1}}\left(1-e^{j \omega_{0}} z^{-1}\right)+\frac{A_{3}}{1-e^{-j \omega_{0}} z^{-1}}\left(1-e^{j \omega_{0}} z^{-1}\right)\right. \\
& \left.+\left(\sum_{k=0}^{k=m-1} c_{k} z^{-k}\right)\left(1-e^{j \omega_{0}} z^{-1}\right)\right)\left.\right|_{z=e^{j \omega_{0}}} \tag{2.1.8}\\
& \left.Y(z)\left(1-e^{j \omega_{0}} z^{-1}\right)\right|_{z=e^{j \omega_{0}}}=A_{2} . \tag{2.1.9}
\end{align*}
$$

Using (2.0.7) again, and also (2.0.13), we write

$$
\begin{gather*}
A_{2}=\left.\frac{\sin \left(\omega_{0}\right)}{m+1} \frac{\left(1-z^{-(m+1)}\right) z^{-1}}{\left(1-z^{-1}\right)\left(1-e^{j \omega_{0}} z^{-1}\right)\left(1-e^{-j \omega_{0}} z^{-1}\right)}\left(1-e^{j \omega_{0}} z^{-1}\right)\right|_{z=e^{j \omega_{0}}} \tag{2.1.10}\\
A_{2}=\left.\frac{\sin \left(\omega_{0}\right)}{m+1} \frac{\left(1-z^{-(m+1)}\right) z^{-1}}{\left(1-z^{-1}\right)\left(1-e^{-j \omega_{0}} z^{-1}\right)}\right|_{z=e^{j \omega_{0}}} \tag{2.1.11}\\
A_{2}=\frac{\sin \left(\omega_{0}\right)}{m+1} \frac{\left(1-e^{-j(m+1) \omega_{0}}\right) e^{-j \omega_{0}}}{\left(1-e^{-j \omega_{0}}\right)\left(1-e^{-j 2 \omega_{0}}\right)} \tag{2.1.12}
\end{gather*}
$$

Some transformations can be made on (2.1.12) considering that the three terms like

$$
\begin{equation*}
1-e^{-j k \omega_{0}} \tag{2.1.13}
\end{equation*}
$$

with $k=\{1,2, m+1\}$, can be written as

$$
\begin{align*}
1-e^{-j k \omega_{0}} & =e^{-j \frac{k}{2} \omega_{0}} e^{j \frac{k}{2} \omega_{0}}\left(1-e^{-j k \omega_{0}}\right) \\
& =e^{-j \frac{k}{2} \omega_{0}}\left(e^{j \frac{k}{2} \omega_{0}}-e^{-j \frac{k}{2} \omega_{0}}\right) \tag{2.1.14}\\
& =2 j e^{-j \frac{k}{2} \omega_{0}} \sin \left(\omega_{0} \frac{k}{2}\right)
\end{align*}
$$

So, substituting (2.1.14) in (2.1.12) we obtain

$$
\begin{align*}
A_{2} & =\frac{\sin \left(\omega_{0}\right)}{m+1} \frac{2 j e^{-j \frac{m+1}{2} \omega_{0}} \sin \left(\omega_{0} \frac{m+1}{2}\right) e^{-j \omega_{0}}}{2 j e^{-j \frac{1}{2} \omega_{0}} \sin \left(\omega_{0} \frac{1}{2}\right) 2 j e^{-j \omega_{0}} \sin \left(\omega_{0}\right)} \\
& =\frac{\sin \left(\omega_{0} \frac{m+1}{2}\right)}{2(m+1) \sin \left(\omega_{0} \frac{1}{2}\right)} \frac{e^{-j \frac{m}{2} \omega_{0}}}{j} \tag{2.1.15}\\
& =\frac{\sin \left(\omega_{0} \frac{m+1}{2}\right)}{2(m+1) \sin \left(\omega_{0} \frac{1}{2}\right)} e^{-j\left(\frac{m}{2} \omega_{0}+\frac{\pi}{2}\right)}
\end{align*}
$$

2.1.3 Computation of A_{3}

Hopefully the fact that p_{3} is the complex conjugate of $p_{2}, p_{3}=p_{2}^{*}$, means that $A_{3}=A_{2}^{*}$.

2.2 Time domain response

The computation of the time domain response is straightforward as was previously stated in (2.1.1):

$$
\begin{align*}
y_{p}(n) & =\sum_{k=1}^{n} A_{k}\left(p_{k}\right)^{n} u(n) \\
& =\left(A_{1}+A_{2}\left(e^{j \omega_{0}}\right)^{n}+A_{2}^{*}\left(e^{-j \omega_{0}}\right)^{n}\right) u(n) \tag{2.2.1}\\
& =\left(\left(A_{2} e^{j n \omega_{0}}\right)+\left(A_{2} e^{j n \omega_{0}}\right)^{*}\right) u(n) \\
& =2\left|A_{2}\right| \cos \left(n \omega_{0}+\angle A_{2}\right) u(n)
\end{align*}
$$

Going back to (2.1.15) we can easily obtain the absolute value \| and the phase \angle of A_{2} :

$$
\begin{align*}
\left|A_{2}\right| & =\frac{\sin \left(\omega_{0} \frac{m+1}{2}\right)}{2(m+1) \sin \left(\omega_{0} \frac{1}{2}\right)} \tag{2.2.2a}\\
\angle A_{2} & =-\left(\frac{m}{2} \omega_{0}+\frac{\pi}{2}\right), \tag{2.2.2b}
\end{align*}
$$

provided that (2.2.2a) is positive ${ }^{6}$. In this particular case, we can say that the input (2.0.5)

$$
x(n)=\sin \left(\omega_{0} n\right) u(n)
$$

has the SSR

$$
\begin{align*}
& \left.y(n)\right|_{S S R}=2\left|A_{2}\right| \cos \left(n \omega_{0}+\angle A_{2}\right) u(n) \\
& 2\left|A_{2}\right| \sin \left(n \omega_{0}+\angle A_{2}+\frac{\pi}{2}\right) u(n) \tag{2.2.3}
\end{align*}
$$

where we have used

$$
\begin{equation*}
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right) . \tag{2.2.4}
\end{equation*}
$$

3 A general result

Now, we go backward to section 2.1.2 to obtain a general result for A_{2} as a function of $H(z)$. We start at (2.1.9):

$$
\begin{align*}
A_{2} & =\left.Y(z)\left(1-e^{j \omega_{0}} z^{-1}\right)\right|_{z=e^{j \omega_{0}}} \\
& =\left.H(z) X(z)\left(1-e^{j \omega_{0}} z^{-1}\right)\right|_{z=e^{j \omega_{0}}} \tag{3.0.1a}\\
& =\left.H(z) \frac{\sin \left(\omega_{0}\right) z^{-1}}{\left(1-e^{j \omega_{0}} z^{-1}\right)\left(1-e^{-j \omega_{0}} z^{-1}\right)}\left(1-e^{j \omega_{0}} z^{-1}\right)\right|_{z=e^{j \omega_{0}}} \tag{3.0.1b}\\
& =\left.H(z) \frac{\sin \left(\omega_{0}\right) z^{-1}}{\left(1-e^{-j \omega_{0}} z^{-1}\right)}\right|_{z=e^{j \omega_{0}}} \\
& =H\left(e^{j \omega_{0}}\right) \frac{\sin \left(\omega_{0}\right) e^{-j \omega_{0}}}{\left(1-e^{-j 2 \omega_{0}}\right)} \tag{3.0.1c}\\
& =H\left(e^{j \omega_{0}}\right) \frac{\sin \left(\omega_{0}\right) e^{-j \omega_{0}}}{2 j e^{-j \omega_{0}} \sin \left(\omega_{0}\right)} \tag{3.0.1d}\\
& =\frac{1}{2 j} H\left(e^{j \omega_{0}}\right), \tag{3.0.1e}
\end{align*}
$$

where we have used (2.0.6) to go from (3.0.1a) to (3.0.1b), and (2.1.14) to go from (3.0.1c) to (3.0.1d).

Now we can rewrite (2.2.2), which is a particular result for a particular $H(z)$, using (3.0.1e) to obtain a general result as a function of $H(z)$:

$$
\begin{align*}
\left|A_{2}\right| & =\frac{1}{2}\left|H\left(e^{j \omega_{0}}\right)\right| \tag{3.0.2a}\\
\angle A_{2} & =\angle H\left(e^{j \omega_{0}}\right)-\frac{\pi}{2} . \tag{3.0.2b}
\end{align*}
$$

[^2]Finally we can write the SSR of a sinusoidal input of discrete frequency ω_{0}

$$
x(n)=\sin \left(\omega_{0} n\right) u(n)
$$

as a function of $H(z)$ evaluated at $z=e^{j \omega_{0}}$ in the following way:

$$
\begin{align*}
\left.y(n)\right|_{S S R} & =\left|H\left(e^{j \omega_{0}}\right)\right| \cos \left(n \omega_{0}+\angle H\left(e^{j \omega_{0}}\right)-\frac{\pi}{2}\right) u(n) \tag{3.0.3}\\
& =\left|H\left(e^{j \omega_{0}}\right)\right| \sin \left(n \omega_{0}+\angle H\left(e^{j \omega_{0}}\right)\right) u(n) .
\end{align*}
$$

4 Conclusions

We have started computing the response of a particular system to a sinusoidal input. In the process we have discarded the parts of the response that disappear after a certain time, the transient response, to focus on the steady-state response.

Next, we have isolated the part of the response that depends on the system to obtain the general result that says that the response of a LTI discrete-time system, characterized by the transfer function $H(z)$, to a sinusoidal input $x(n)$, with frequency ω_{0}, amplitude A and phase ϕ, has a sinusoidal SSR $\left.y(n)\right|_{S S R}$ with the same input frequency ω_{0}, an amplitude being that of the input A multiplied by the absolute value of $H(z)$ evaluated at $z=e^{j \omega_{0}}$, and a phase being that of the input ϕ plus the phase of $H(z)$ evaluated at $z=e^{j \omega_{0}}$.

This statement can be summarized using the following equations. The sinusoidal SSR to the input

$$
\begin{equation*}
x(n)=A \cos \left(n \omega_{0}+\phi\right) u(n) . \tag{4.0.1}
\end{equation*}
$$

is

$$
\begin{equation*}
\left.y(n)\right|_{S S R}=A\left|H\left(e^{j \omega_{0}}\right)\right| \cos \left(n \omega_{0}+\angle H\left(e^{j \omega_{0}}\right)+\phi\right) u(n) . \tag{4.0.2}
\end{equation*}
$$

[^0]: ${ }^{1}$ However, this is not true for transient results.
 ${ }^{2}$ Numerator and denominator are polynomials in z^{-1}.

[^1]: ${ }^{3}$ Except for the case $m=0$ that means $H(z)=1$ and, as a consequence, $Y(z)=X(z)$.
 ${ }^{4}$ We have assumed that each p_{k} has multiplicity one.
 ${ }^{5}$ Note that although we could use $Y_{P}(z)$ instead of $Y(z)$, the use of $Y(z)$ needs no manipulation.

[^2]: ${ }^{6}$ If not, we change the sign of (2.2.2a) and add π to (2.2.2b).

