
UNIVERSITAT POLIT„ECNICA
DE CATALUNYA
BARCELONATECH

Programació de Baix Nivell
—

Enginyeria de Sistemes TIC

Bloc Llenguatge C

Sebastià Vila-Marta

17 de febrer de 2026

Aquesta obra està subjecta a una llicència Attribution-NonCommercial-ShareAlike 3.0 Spain de
Creative Commons. Per veure’n una còpia, visiteu http://creativecommons.org/licenses/

by-nc-sa/3.0/es o envieu una carta a Creative Commons, 171 Second Street, Suite 300, San
Francisco, California 94105, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/es
http://creativecommons.org/licenses/by-nc-sa/3.0/es

Índex

I. Material flipped classroom 3

1. Introducció 4
1.1. Recomanacions per a l’estudi . 4
1.2. Recomanacions per als problemes . 5

1.2.1. Material necessari . 5
1.2.2. Control de versions . 5

2. Sessió 1 7
2.1. Text d’estudi . 7
2.2. Preguntes per pensar . 7
2.3. Exercicis pràctics . 7

3. Sessio 2 10
3.1. Text d’estudi . 10
3.2. Guia de lectura . 10
3.3. Exercicis pràctics . 11

II. Notes sobre C 13

4. Tutorial C99 14
4.1. Primer exemple . 14
4.2. Variables i tipus escalars . 14

4.2.1. Variables i tipus . 14
4.2.2. Operacions . 17
4.2.3. Algunes transgressions . 19
4.2.4. Prioritat i associativitat dels operadors 19

4.3. Implementació de mòduls . 20
4.3.1. Esquema bàsic . 20
4.3.2. Singleton . 22
4.3.3. Classes . 23

2

Part I.

Material flipped classroom

3

1. Introducció

Aquest és el ≪manual≫ pel primer bloc de l’assignatura ≪Programació a BaixNivell≫.
Aquest bloc gira al voltant de l’aprenentatge del llenguatge de programació C, però
durant aquest viatge presenta i reforça molts altres coneixements de l’àmbit de la pro-
gramació.
Aquest bloc està organitzat en sessions que tenen la mateixa estructura:

1. L’estudiant, individualment, treballa de forma autònoma un caṕıtol (o part d’un
caṕıtol/s) del llibre seminal de C The C programming language, [6].

2. A la següent classe de teoria, el professor presenta alguns elements rellevants més o
menys relacionats amb l’estudi que s’ha fet i es dedica un temps important per que
els estudiants presentin dubtes i comentaris referents al tema estudiat. L’objectiu
és treballar col.lectivament allò més punxegut del tema treballat individualment.

3. En la següent classe de problemes s’espera que l’estudiant, individualment, resolgui
els problemes corresponents a la sessió, amb el suport del professorat de proble-
mes/laboratori. Els problemes no resolts a classe és convenient resoldre’ls durant
el temps d’estudi.

La classe de problemes requerirà portar el vostre computador personal a classe
convenientment configurat amb GNU/Linux i a punt per treballar.

Aquest document recull el material necessari per treballar aquestes sessions. Per cada
sessió hi trobareu:

1. Els caṕıtols del llibre que cal estudiar.

2. Unes preguntes motivadores per ajudar a treballar el tema d’estudi.

3. Una llista de problemes per a resoldre relacionats amb la sessió.

1.1. Recomanacions per a l’estudi

De cara a l’activitat d’estudi que implica cada sessió, us recomanem que considereu les
següents recomanacions:

1. Llegiu sobre paper.

2. Llegiu conscientment, mirant d’entendre el que s’hi diu i prenent nota d’allò que
no enteneu: conceptes, paraules concretes, etc.

4

3. Mireu de relacionar el que llegiu amb el que sabeu (de la vostra experiència amb
Python, per exemple).

4. Rellegiu aquells passatges que trobeu més densos.

5. Mireu de llegir en un ambient sense distraccions que permeti concentrar-vos.

6. Feu servir les preguntes motivadores com element de reforç. Estan pensades per
que, mirant d’entendre-les, forcin a repassar, repensar i relacionar amb altres co-
neixements allò que esteu estudiant.

1.2. Recomanacions per als problemes

Cada sessió conté també una llista de problemes de dificultat creixent que van entrenant
en l’ús del llenguatge C. La idea és anar-los resolent, implementant i provant un darrera
l’altre fins on sigui possible. Us recomanem que en el vostre temps d’estudi els acabeu
de resoldre tots. L’objectiu final és anar aconseguint agilitat amb la sintaxi i les eines
de treball relacionades amb el llenguatge C.

1.2.1. Material necessari

• El vostre computador personal funcional amb sistema operatiu GNU/Linux, pre-
ferentment sobre el hardware real (no virtualitzat).

• Els paquets emacs, gcc, libc6-dev instal.lats.

1.2.2. Control de versions

Aquesta pràctica i totes les que segueixen cal desenvolupar-les amb el suport —obligatori—
d’un sistema de control de versions. El sistema a emprar és subversion, [3]. Ne-
cessàriament cal hostatjar el dipòsit de versions a https://escriny.epsem.upc.edu.

La manera d’organitzar el dipòsit de versions és crear un sol projecte i tenir un directori
espećıfic per cada pràctica. L’estructura de directoris que n’ha de resultar ha de ser
similar a la que s’observa a la figura 1.1. Recordeu que només se sotmeten a la disciplina
del control de versions els fitxers font del projecte i altres fitxers que defineixen el projecte
com ara els Makefile.
Doneu d’alta un projecte i el corresponent dipòsit de versions a escriny per a poder

gestionar les pràctiques.

5

https://escriny.epsem.upc.edu

pbn

sessio1

exercici1.c

exercici2.c

sessio2

sessio3

Figura 1.1.: Estructura del dipòsit de versions pels problemes.

6

2. Sessió 1

2.1. Text d’estudi

Estudieu les següents parts del llibre:

• Chapter 1: A Tutorial Introduction (llevat de l’apartat 1.10)

2.2. Preguntes per pensar

1. Quin paper juga el ;? És un separador de sentència o un final de sentència?

2. Quan posem claus {} i per quina raó les posem? Quin sentit gramatical tenen?

3. Quina diferència hi ha entre aquestes dues constants: ’a’ i "a"?

4. Quina diferència hi ha entre aquestes dues constants. 3 i 3.0?

5. A la pàgina 21 hi ha una regla sintàctica per a la sentència condicional. D’acord
amb aquesta regla, els parèntesis que hi ha darrera l’if, són obligats? formen part
de l’expressió?

6. Què és una expressió? i una sentència?

7. Què és una funció? Com la definiries?

8. Quines diferències hi ha entre una taula (array en anglès) i una llista?

9. Per què la funció getchar() retorna un int?

10. Què és un argument (o actual parameter) i què és un paràmetre (o formal para-
meter).

11. Com funciona el mecanisme de pas de paràmetres per valor?

12. Què és un prototip? per què deuen existir?

13. Què n’opines de l’estil de programació d’aquest caṕıtol?

2.3. Exercicis pràctics

7

Exercici 2.1 Dissenyeu i implementeu un programa en C99 que escriu pel canal de
sortida la frase "Mort! qui t’ha mort?".

Exercici 2.2 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada un enter n seguit d’un caràcter c i escriu pel canal de sortida el caràcter
repetit n vegades.

Exercici 2.3 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada una frase acabada en el caràcter punt i escriu pel canal de sortida quantes
vegades apareix la lletra ’a’.

Exercici 2.4 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada un byte en format hexadecimal i n’escriu les representacions en base 2, 8 i
10 pel canal de sortida. El programa cal que es digui converteix.
L’exercici és més interessant si en feu dues versions:

1. Una en que el càlcul de la nova representació l’implementeu ≪a pèl≫ en el mateix
programa.

2. Una altra en que aprofiteu tant com sigui possible les conversions de format que
ofereix la funció printf() de la llibreria de C.

Exercici 2.5 Dissenyeu un programa que llegeix del canal d’entrada un real δ i escriu
ben formatada una taula de conversió de graus Cèlsius a graus Fahrengheit entre 0 ◦C i
100 ◦C.

Exercici 2.6 Dissenyeu i implementeu un programa que llegeix un text acabat en EOF i
l’escriu comprimint els espais. És a dir, quan troba més d’un espai seguit els substitueix
per un sol espai.

Exercici 2.7 Dissenyeu i implementeu un programa que llegeix un text acabat en EOF

i escriu un histograma de les longituds de les ĺınies. És a dir, per cada ĺınia llegida escriu
una ĺınia amb la longitud de la ĺınia llegida seguida de tants asteriscs com caràcters tenia
la ĺınia.
Per exemple, si es llegeix la ĺınia

In Springfield, they’re eating the cats!

hauria d’escriure

40 |**

8

Exercici 2.8 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada els coeficients d’una equació de segon grau i escriu pel canal de sortida la
seva solució.

Exercici 2.9 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada un preu en euros i escriu pel canal de sortida el desglòs mı́nim en moneda
que correspon al preu.

9

3. Sessio 2

3.1. Text d’estudi

Estudieu les següents parts del llibre:

• Chapter 2: Types, Operators and Expressions

3.2. Guia de lectura

1. Què és un tipus de dades? I què és un valor d’un tipus? I la representació d’un
valor? Tots els valors d’un tipus tenen la mateixa representació? Hi ha una sola
representació possible d’un valor d’un tipus?

2. Tipus i representació. Quina relació tenen? Són rellevants per l’etapa de disseny
d’un programa? Tenen relació amb el concepte d’objecte (en el sentit de l’orientació
a objectes)?

3. Constants vs variables amb qualificador const. Quines similituds i diferències
tenen?

4. Què significa que quelcom sigui ≪implementation-defined≫? Podem basar un pro-
grama en quelcom que és ≪implementation-defined≫? Per què?

5. Què és la precedència —també dita prioritat— i l’associativitat d’un operador?
Per què existeixen?

6. Què és un operador unari?

7. Per què l’operador de postincrement es diu que actua via efecte lateral?

8. Per què l’operador >> sobre tipus integrals amb signe generalment comporta ≪ex-
tensió de signe≫ (arithmetic shift)?

9. Per què l’assignació és un operador a C en comptes de ser una sentència com
habitualment?

10. Quina diferència hi ha entre les operacions & i && ?

11. Quina diferència hi ha entre un operador i una operació?

12. Què és un cast?

10

13. Què és un operador relacional? I un operador lògic?

14. Quina és el sentit de les operacions bitwise?

3.3. Exercicis pràctics

� Exercici 3.1 Afegiu opcions al programa resultant de l’exercici 2.4 de manera que
converteix -b converteixi només a binari, converteix -o a octal i converteix -d a
decimal.
Aquest exercici requereix investigar com es traslladen a un programa C els paràmetres

amb que es crida des de la shell de Unix.

Exercici 3.2 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada una paraula de 2B en hexadecimal i escriu per la sortida la mateixa paraula
després d’haver forçat sengles zeros els bits de més i menys pes. En tot moment la
paraula caldrà emmagatzemar-la com a tal i no com una cadena de caràcters o com una
taula.
Per exemple, si l’entrada és 0aaa la sortida hauria de ser 8aab.

Exercici 3.3 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada una paraula de 2B en hexadecimal i escriu per la sortida el resultat d’extreure
el byte que va dels bits 4 al 11 (el bit de menys pes és el bit 0). En tot moment la
paraula i el byte caldrà emmagatzemar-la com a tal i no com una cadena de caràcters o
com una taula.

Exercici 3.4 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada una seqüència binària codificada en hexadecimal i acabada en un byte 0 i
escriu pel canal de sortida el nombre de bits amb valor 1 d’aquesta seqüència.

Exercici 3.5 Considereu que un senyal analògic entre −1,0V i 1,0V el mostregeu a
100,0Hz i codifiqueu digitalment el resultat sobre 1B en complement a 2. Una cadena
de 100B, doncs, representa 1 s d’aquest senyal. Assumiu que treballem sempre amb
segments d’1 s que els representem com a cadenes hexadecimals.
Dissenyeu i implementeu un programa en C99 que llegeix pel canal d’entrada un seg-

ment de senyal i escriu pel canal de sortida un altre senyal de la mateixa natura que
l’anterior amb un pols d’amplitud 1V i 20ms de durada quan el primer senyal fa un pas
per zero.

Exercici 3.6 Dissenyeu un programa que llegeix un enter k d’un byte de longitud,
seguidament en calcula −k assumint que es representa en complement a 2 i sense fer
servir operacions aritmètiques. Finalment escriu el resultat.
L’objectiu és manipular a nivell de bit la representació en complement a 2 d’un enter.

11

Exercici 3.7 Dissenyeu un programa que determini els valors mı́nim i màxim del
domini dels tipus següents: short, unsigned short, int i long. Feu-ho de dues maneres:

1. Fent servir <limits.h>.

2. Calculant-los mitjançant operacions bit a bit (desplaçaments i complements).

Exercici 3.8 Escriviu una funció amb prototip int es potencia2(unsigned x) que retorni
1 si x és una potència de 2 i 0 en cas contrari. Feu servir només operadors bit a bit i
comparacions. Proveu la funció.

12

Part II.

Notes sobre C

13

4. Tutorial C99

El llenguatge de programació C té un paper fonamental en aquesta assignatura. Hi ha
molta i molt bona literatura sobre el llenguatge C, especialment en la seva variant C89.

Com a bibliografia recomanem [6], que hauria de ser un dels llibres de capçalera. En
segona instància també els llibres lliures [1, 2] i els apunts [7] poden ser d’utilitat.
A mode de xuletari, el tŕıptic [9], és d’allò més pràctic.
Finalment, molts llibres sobre la disciplina dediquen caṕıtols a introdüıt el llenguatge

C. Aquest és el cas de [8]
En aquest apèndix només hi trobareu un resum molt breu i sintètic dels aspectes més

interessants en l’àmbit d’aquest document que incorpora l’estàndard C99. Les raons i la
lògica dels canvis que incorpora C99 respecte C89 estan documentades a [5].

4.1. Primer exemple

Un programa codificat en C és una col.lecció de funcions una de les quals té un nom
privilegiat, main(), i actua com a programa principal. La figura 4.1 és un programa en
C que conté una funció i un programa principal.
Si aquest programa el contingués el fitxer senzill.c, el compilaŕıem i muntaŕıem amb

la comanda:

$ gcc −std=c99 −o senzill senzill.c

i tot seguit provaŕıem d’executar-lo fent:

$./senzill

L’executable cal prefixar-lo per nom del directori atès que les shells de UNIX només
cerquen executables en els directoris que indica la variable d’entorn PATH. Habitualment
el directori de treball no forma part d’aquesta col.lecció de directoris. Per tant cal
explicitar on és el fitxer executable. En aquest cas usem un camı́ relatiu.

4.2. Variables i tipus escalars

4.2.1. Variables i tipus

Les declaracions de variables tenen aquest aspecte:

int x, y;

14

#include <stdio.h>
#include <assert.h>

int dobla(int x) {
int r;

r = x ∗ 2;
return r;

}

int main() {
int v, n;

n = scanf("%d", &v);
assert(n == 1);
printf("%d\n", dobla(v));

return 0;
}

Programa 4.1: Programa senzill en C99

i poden ocórrer en qualsevol lloc del codi1. Com es veu, primer s’escriu el tipus de dades
i a continuació una llista d’identificadors de variable.
Els tipus de dades més corrents són els següents:

Tipus Significat Exemple

bool Un booleà. Cal incloure prèviament el header
stdbool.h.

#include <stdbool.h>
bool b; b = false;

char Un caràcter (no una cadena!) char c; c = ’a’;
short Un enter “curt”. Habitualment 16 bit. short x; x = 67;
int Un enter habitualment de 32 bit int i; i = −12;
long Un enter llarg. Habitualment de 64 bit long l; l = 3L;
float Un real de precisió simple float x;

x = 23.45; x = 2.0e−13;

Les mides dels tipus depenen de la plataforma i el compilador. Per tant no són
portables. El header limits.h defineix una sèrie de constants que permeten conèixer els
ĺımits de cada tipus de dades.
La taula 4.1 mostra la classificació habitual dels tipus escalars de C99.
Els tipus disposen d’operació de conversió de tipus expĺıcita (cast):

1És una caracteŕıstica apareguda a C99

15

Classificació Tipus

Integrals Booleà bool
Caràcter char
Enter Ordinari Amb signe short

int
long

Sense signe unsigned short
unsigned int
unsigned long

Mida fixa Amb signe int8 t
int16 t
int32 t

Sense signe uint8 t
uint16 t
uint32 t

Reals Flotant float
double

Taula 4.1.: Classificació dels tipus escalars de C

int i;
short s;

i = 78;
s = (short)i;

De la mateixa manera, existeixen un conjunt de regles de conversió que s’apliquen de
forma automàtica (coercion)2. En general un tipus promociona automàticament a un
tipus de grandària superior. Cal, però, tenir cura quan es barregen tipus amb i sense
signe. És una font important de problemes i cal anar amb peus de plom.

Tots els tipus enters disposen de la versió sense signe. El tipus sense signe associat
a un tipus amb signe es construeix prefixant amb unsigned. També es poden definir
constants sense signe usant el sufix U a tal efecte. Per exemple:

unsigned int i;

i = 34U;

Sorprenentment, el tipus char es considera amb signe i, per tant, existeix el tipus
unsigned char.

També és possible usar constants enteres escrites en base 23, 8 i 16:

unsigned int x;

2Noteu la diferència de significat entre cast i coercion.
3A partir de C99.

16

x = 0b010; // binari
x = 0347; // octal
x = 0x3af; // hexadecimal

Per evitar la manca de portabilitat dels tipus de dades pel que fa a la seva longitud,
C99 defineix un conjunt de tipus amb la mida ben definida. Per usar-los és imprescindible
incloure el header stdint.h. Els tipus en qüestió són uint8 t, uint16 t, uint32 t i els seus
corresponents amb signe int8 t, int16 t i int32 t, que com el seu nom indica corresponen
a mides de 8 bit, 16 bit i 32 bit respectivament. Cal usar aquests tipus quan ens cal
representar quelcom que ha de tenir una longitud fixada, per exemple un port o un
registre.
La funció predefinida sizeof permet consultar en temps d’execució la mida de qualsevol

tipus. El resultat es dona usant com a unitat la mida d’un char. Aix́ı, per exemple,
pot succeir que sizeof(int) sigui 4, indicant que un int ocupa 4 char’s. La mida en bits
d’un char es pot consultar emprant la constant de limits.h anomenada CHAR BIT. Molt
sovint CHAR BIT==8.

4.2.2. Operacions

A C l’assignació es considera una operació que, per efecte lateral, modifica el contingut
d’una variable. Aix́ı, per exemple, x=3 és una operació que modifica el valor de la
variable x i, a la vegada, val 3. D’aquesta forma, es pot escriure y=(x=3) o, traient els
parèntesis y=x=3, que té l’efecte d’assignar el valor 3 tant a x com a y.
Les operacions sobre el tipus bool són les habituals:

Operació Significat

|| Disjunció booleana (OR).
&& Conjunció booleana (AND).
! Negació booleana (NOT).
== Igualtat.
!= Diferència.

Sobre els tipus integrals (enters), les operacions es classifiquen en:

• Operacions aritmètiques:

Operació Significat

+ Suma.
* Producte.
- Resta o canvi de signe.
/ Divisió entera quan ambdós operands són enters.
% Mòdul.

• Operacions booleanes:

17

Operació Significat

== Igualtat.
!= Diferència.
>, >=, <, <= Comparació

• Operacions bit a bit:

Operació Significat

>> Shift dreta. Amb extensió de signe si el tipus és signed.
<< Shift esquerra. Amb extensió de signe si el tipus és signed.
~ Complement.
& AND bit a bit.
| OR bit a bit.
^ OR exclusiva bit a bit.

Els enters i booleans disposen a més d’operacions de modificació, que combinen l’as-
signació i una operació espećıfica. Per exemple, les dues operacions següents són equi-
valents:

x ∗= 2;
x = x ∗ 2;

De manera similar, es disposa d’operacions d’auto increment/decrement. Aix́ı, i++
significa: “avalua i i, posteriorment, incrementa el seu valor”. Això es coneix com
post-increment. De manera simètrica, el pre-increment ++i significa “incrementa i i
avalua-la”. D’acord amb això el següent fragment de programa és tal que en acabar
a==128, ra==128, b==128 i rb==127.

int a, b, ra, rb;

a = b = 127;
ra = ++a;
rb = b++;

També disposem d’operadors de pre i post-decrement amb la sintaxi esperable: j−− i
−−j.
En el cas dels reals en coma flotant, les operacions aritmètiques bàsiques són:

Operació Significat

+ Suma.
* Producte.
- Resta o canvi de signe.
/ Divisió real quan un dels operands és real.

A banda de les operacions elementals, si s’inclou el header math.h es pot accedir a una
col.lecció d’operacions i funcions més àmplia. Aquesta col.lecció inclou funcions com:

18

Operació Significat

sin, cos, tan Funcions trigonomètriques.
sqrt Arrel quadrada.
exp Exponenciació.
log Logaritme natural.

En qualsevol referència com ara la Viquipèdia i, naturalment l’estàndard [4], trobareu
la documentació completa.

4.2.3. Algunes transgressions

De fet a C és corrent, però delicat, tractar indiscriminadament qualsevol tipus enter com
si es tractés d’un booleà i confondre deliberadament caràcters i enters. Les conversions
entre tipus faciliten aquesta pràctica.
Pel que fa als booleans, qualsevol tipus integral pot ser considerat un booleà sota la

premissa de que el valor 0 cal entendre’l com a false i la resta de valors com a true. Aix́ı,
el següent exemple és plenament vàlid:

int i;
bool b;

b = false; i = 33;
if (b || i)
printf("Aja!");

Seguint amb les transgressions, també es comú entendre els char com a enters ≪petits≫.
En el següent exemple, el programador tracta la variable c sense donar-li en cap moment
el significat de caràcter:

char c;
int i;

c = 34;
i += c

En casos com aquest és més interessant usar una variable de tipus int8 t en comptes de
char.

4.2.4. Prioritat i associativitat dels operadors

Atesa la quantitat d’operadors diferents emprats a C, la interpretació de les expressions
pot ser dif́ıcil i cal tenir a mà la taula de prioritats i associativitats. La taula 4.2 mostra
aquesta informació.

19

Prioritat Operador Associativitat

1 ++, −− (post) LR
[], ()
., −>

2 ++, −− (pre) RL
+, −, ∗, & (unaris)
(cast), ˜, !

3 ∗, /, % (multiplicatives) LR
+, − (additives)

4 >>, <<

5 >, >=, <, <=

6 ==, !=

7 &

8 ˆ

9 |

10 &&

11 ||

12 ?: (expr. cond.) RL

13 =, +=, ∗=, etc.

14 , (coma) LR

Taula 4.2.: Taula de prioritats i associativitat dels operadors C.

4.3. Implementació de mòduls

4.3.1. Esquema bàsic

Aquesta secció descriu la forma d’implementar el concepte de mòdul usat en el disseny
d’una aplicació a l’entorn de C. Tot i que hi ha diversos esquemes possibles de treball,
aqúı se’n presenta només un d’espećıfic que és prou general i ortogonal.
La idea és aprofitar la possibilitat de fer compilació separada per implementar mòduls

seguint un esquema d’organització ben establert. Entenem que un mòdul és un con-
tenidor de funcions, constants i tipus de dades que poden ser usats per altres mòduls.
Addicionalment un mòdul defineix un espai de noms privat que permet ocultar detalls
d’implementació a la resta dels mòduls que composen un projecte. Un mòdul, doncs, té
una part pública i una part privada.
L’organització que es proposa implementa un mòdul sobre dos fitxers, un header i un

fitxer de codi c. El primer conté la part pública del mòdul mentre que els segon conté

20

la part privada. Vegem-ho en una sèrie d’exemples.
Suposem que el mòdul mod1, per exemple, és un mòdul funcional que implementa

dues funcions públiques: inc() i dec(). La implementació d’aquestes funcions és privada.
Aleshores la forma d’implementar el mòdul és escriure dos fitxers. El primer, un fitxer
de headers l’anomenem mod1.h i té aquesta forma:

#ifndef MOD1 H
#define MOD1 H

void inc(int ∗const i);
void dec(int ∗const i);

#endif

L’estructura d’un header és sempre la mateixa. Primer hi ha un parèntesi format per
les sentències de preprocessador #ifndef i #endif que impossibilita una doble inclusió
d’aquest header en un fitxer. Tot i que pot semblar excessiu, és possible que es doni una
doble inclusió atès que en un fitxer determinat es pot incloure indirectament el mateix
header per diversos camins i ser dif́ıcil de detectar. Aquest parèntesi, que cal escriure
sempre, evita aquest problema. Noteu que el śımbol MOD1 H ha de ser particular de
cada mòdul. Aix́ı, si el mòdul es digués az34, per exemple, usaŕıem el śımbol AZ34 H.
A l’interior del parèntesi, en aquest cas, el mòdul conté les capçaleres de les funcions

públiques. Noteu que les capçaleres són imprescindibles per a que el compilador pugui
saber si les crides a aquestes funcions són correctes.
Pel que fa a la part privada del mòdul, la escriuŕıem en el fitxer mod1.c, que tindria

aquest aspecte:

#include "mod1.h"

static int suma(int k, int v) {
return k + v;

}

void inc(int ∗const i) {
∗i = suma(∗i, 1);

}

void dec(int ∗const i) {
∗i = suma(∗i, −1);

}

Noteu que, de forma una mica artificial, s’ha usat una funció privada del mòdul per
implementar dec() i inc(). Aquesta funció, suma(), s’a declarat com static per fer-la
privada i, naturalment, el seu prototip no apareix al fitxer mod1.h.
Si des de la implementació d’un segon mòdul, posem que és modu.c, es volen usar les

funcions de mod1, cal simplement afegit l’include escaient i cridar-les on convingui:

21

#include <stdio.h>
#include "mod1.h"

int main() {
int v = 3;

inc(&v);
printf("%d\n", v);

return 0;
}

Per compilar aquest exemplet simplement caldria fer:

$ gcc −std=c99 −I. −c mod1.c
$ gcc −std=c99 −I. −c modu.c
$ gcc −std=c99 −o modu modu.o mod1.o

o bé, en una sola ordre fent:

$ gcc −std=c99 −I. −o modu modu.c mod1.c

4.3.2. Singleton

Un singleton en la terminologia d’orientació a objectes és un objecte del que només
n’existeix una sola instància en una aplicació. Molt sovint s’usen els mòduls per a
implementar aquest concepte. Imagineu que en una aplicació feta de diversos mòduls
hi ha un únic comptador que s’incrementa de 5 en 5 i es decrementa de 3 en tres. Del
comptador la única informació útil és saber si és positiu o negatiu. Aquest comptador
es pot implementar com un mòdul que exporta les operacions indicades i que encapsula
la representació del comptador de manera privada.
La implementació del header seria la següent si assumim que correspon al fitxer

compt.h:

#ifndef COMPT H
#define COMPT H

#include <stdbool.h>

void inc(void);
void dec(void);
bool is positive(void);

#endif

Noteu:

22

• Només conté els prototips de les funcions públiques però cap referència a la imple-
mentació del comptador.

• Inclou el header stdbool atès que s’usa el tipus bool.

La implementació, desada en el fitxer compt.c seria la següent:

#include "compt.h"

static int comptador = 0;

void inc(void) {
comptador += 5;

}

void dec(void) {
comptador −= 3;

}

bool is positive(void) {
return comptador >= 0;

}

Noteu l’ús de static per indicar que la variable comptador és privada i no pot ser usada
des de cap altre mòdul.
Usant aquest mòdul assegureu que no pot haver-hi cap altra còpia del comptador en

un programa.

4.3.3. Classes

A vegades els mòduls s’usen per implementar estructures similars en certa manera a
una classe: un tipus de dades acompanyat d’un conjunt d’operacions. En aquests casos
tant el tipus de dades com les seves operacions són públiques. Imaginem que volem
implementar un tipus que permeti definir piles d’enters de mida no afitada. Aleshores
el header del mòdul, que podŕıem anomenar stack.h, seria similar a:

#ifndef STACK H
#define STACK H

typedef void ∗stack;

stack push(stack p, int i);
stack pop(stack p);
int top(stack p);
stack empty(void);

#endif

23

i la seva implementació, sense tenir en compte possibles excepcions, correspondria a:

#include <stdio.h>
#include <stdlib.h>
#include "stack.h"

typedef struct sc {
int v;
struct sc ∗next;

} cell t;

stack empty(void) {
return NULL;

}

stack push(stack p, int i) {
cell t ∗c = malloc(sizeof(cell t));
c−>v = i;
c−>next = p;
return c;

}

stack pop(stack p) {
cell t ∗c = ((cell t ∗)p) −> next;
free(p);
return c;

}

int top(stack p) {
return ((cell t ∗)p) −> v;

}

D’aquesta manera, qualsevol altre mòdul podria definir variables de tipus stack i operar
amb elles fent:

#include "stack.h"

...
stack s = empty();
s = push(s,30);
s = push(s, 10);
printf("%d\n", top(s));
s = pop(s)
...

24

Bibliografia

[1] Mike Banahan, Declan Brady i Mark Doran. The C Book. Angl. 2a ed. Addison-
Wesley, Pearson Education, 1991. url: http://publications.gbdirect.co.uk/
c_book (cons. 08-02-2017).

[2] Mark Burgess i Ron Hale-Evans. The GNU C Programming Tutorial. Angl. 4.1.
2002. 290 pàg. url: http://www.crasseux.com/books/ctut.pdf (cons. 08-02-2017).

[3] Ben Collins-Sussman, Brian W. Fitzpatrick i C. Michael Pilato. Version Control
with Subversion. Angl. Vers. 1.7. 2011. url: http://svnbook.red-bean.com/en/
1.7/svn-book.pdf (cons. 20-02-2019).

[4] Joint Technical Committee ISO/IEC JTC 1, Subcommittee SC 22, Working Group
14. Draft of the C99 standard with corrigenda TC1, TC2, and TC3 included. Angl.
Draft standart ISO/IEC 9899:TC3. ISO/IEC, 2007. 519 pàg. url: http://www.
open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf (cons. 08-02-2017).

[5] Joint Technical Committee ISO/IEC JTC 1, Subcommittee SC 22, Working Group
14. Rationale for International Standard – Programming Languages – C. C99. Angl.
Rationale. Vers. Revision 5.10. ISO/IEC, 2003. 224 pàg. url: http://www.open-
std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf (cons. 08-02-2018).

[6] Brian Kernighan i Denis Ritchie. The C Programming Language. Angl. 2a ed.
Addison-Wesley, Pearson Education, 1988. 274 pàg. isbn: 9780131103627.

[7] Nick Parlante. Essential C. Angl. 2003. 45 pàg. url: http://cslibrary.stanford.
edu/101/EssentialC.pdf (cons. 08-02-2017).

[8] David Russell. Introduction to Embedded Systems. Using ANSI C and the Arduino
Development Environment. Angl. Synthesis Lectures on Digital Circuits and Sys-
tems 30. Morgan & Claypool Publishers, 2010. 255 pàg. isbn: 9781608454983. doi:
10.2200/S00291ED1V01Y201007DCS030.

[9] Joseph H. Silverman. C Reference Card (ANSI). Angl. 1999. 2 pàg. url: http:
//www.math.brown.edu/~jhs/ReferenceCards/CRefCard.v2.2.pdf (cons.
08-02-2017).

25

http://publications.gbdirect.co.uk/c_book
http://publications.gbdirect.co.uk/c_book
http://www.crasseux.com/books/ctut.pdf
http://svnbook.red-bean.com/en/1.7/svn-book.pdf
http://svnbook.red-bean.com/en/1.7/svn-book.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://cslibrary.stanford.edu/101/EssentialC.pdf
http://cslibrary.stanford.edu/101/EssentialC.pdf
https://doi.org/10.2200/S00291ED1V01Y201007DCS030
http://www.math.brown.edu/~jhs/ReferenceCards/CRefCard.v2.2.pdf
http://www.math.brown.edu/~jhs/ReferenceCards/CRefCard.v2.2.pdf

	Material flipped classroom
	Introducció
	Recomanacions per a l'estudi
	Recomanacions per als problemes
	Material necessari
	Control de versions

	Sessió 1
	Text d'estudi
	Preguntes per pensar
	Exercicis pràctics

	Sessio 2
	Text d'estudi
	Guia de lectura
	Exercicis pràctics

	Notes sobre C
	Tutorial C99
	Primer exemple
	Variables i tipus escalars
	Variables i tipus
	Operacions
	Algunes transgressions
	Prioritat i associativitat dels operadors

	Implementació de mòduls
	Esquema bàsic
	Singleton
	Classes

