UNIVERSITAT POLITECNICA

DE CATALUNYA
UF BARCELONATECH

Programacié de Baix Nivell

Enginyeria de Sistemes TIC

Bloc Llenguatge C

Sebastia Vila-Marta

17 de febrer de 2026

Aquesta obra esta subjecta a una llicéencia Attribution-NonCommercial-ShareAlike 3.0 Spain de
Creative Commons. Per veure’n una copia, visiteu http://creativecommons.org/licenses/
by-nc-sa/3.0/es o envieu una carta a Creative Commons, 171 Second Street, Suite 300, San
Francisco, California 94105, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/es
http://creativecommons.org/licenses/by-nc-sa/3.0/es

Index

Material flipped classroom

Introduccié

1.1. Recomanacions per a l'estudi

1.2. Recomanacions per als problemes
1.2.1. Material necessari
1.2.2. Control de versions

Sessié 1

2.1, Text d’estudi
2.2. Preguntes per pensar u ot e
2.3. Exercicis practics e

Sessio 2

3.1. Text d’estudi
3.2. Guiadelecturao
3.3. Exercicis practics L L e

Notes sobre C

Tutorial C99

4.1. Primer exemple e

4.2. Variablesitipusescalars oo
4.2.1. Variablesitipuso
4.2.2. Operacionso
4.2.3. Algunes transgressionso
4.2.4. Prioritat i associativitat dels operadors

4.3. Implementacié demoduls
4.3.1. Esquema basic oo
4.3.2. Singletono
4.3.3. Classeso

10
10
10
11

Part |I.

Material flipped classroom

1. Introduccid

Aquest és el <manual> pel primer bloc de 'assignatura <Programacié a BaixNivells.
Aquest bloc gira al voltant de 'aprenentatge del llenguatge de programacié C, pero
durant aquest viatge presenta i reforca molts altres coneixements de ’ambit de la pro-
gramacio.

Aquest bloc esta organitzat en sessions que tenen la mateixa estructura:

1. L’estudiant, individualment, treballa de forma autonoma un capitol (o part d’un
capitol/s) del llibre seminal de C The C programming language, [6].

2. A la segiient classe de teoria, el professor presenta alguns elements rellevants més o
menys relacionats amb I'estudi que s’ha fet i es dedica un temps important per que
els estudiants presentin dubtes i comentaris referents al tema estudiat. L’objectiu
és treballar collectivament allo més punxegut del tema treballat individualment.

3. En la segiient classe de problemes s’espera que 'estudiant, individualment, resolgui
els problemes corresponents a la sessid, amb el suport del professorat de proble-
mes/laboratori. Els problemes no resolts a classe és convenient resoldre’ls durant
el temps d’estudi.

La classe de problemes requerira portar el vostre computador personal a classe
convenientment configurat amb GNU/Linux i a punt per treballar.

Aquest document recull el material necessari per treballar aquestes sessions. Per cada
sessié hi trobareu:

1. Els capitols del llibre que cal estudiar.
2. Unes preguntes motivadores per ajudar a treballar el tema d’estudi.

3. Una llista de problemes per a resoldre relacionats amb la sessié.

1.1. Recomanacions per a I'estudi

De cara a ’activitat d’estudi que implica cada sessié, us recomanem que considereu les
segilients recomanacions:

1. Llegiu sobre paper.

2. Llegiu conscientment, mirant d’entendre el que s’hi diu i prenent nota d’allo que
no enteneu: conceptes, paraules concretes, etc.

3. Mireu de relacionar el que llegiu amb el que sabeu (de la vostra experiéncia amb
Python, per exemple).

4. Rellegiu aquells passatges que trobeu més densos.
5. Mireu de llegir en un ambient sense distraccions que permeti concentrar-vos.

6. Feu servir les preguntes motivadores com element de refor¢. Estan pensades per
que, mirant d’entendre-les, forcin a repassar, repensar i relacionar amb altres co-
neixements allo que esteu estudiant.

1.2. Recomanacions per als problemes

Cada sessi6é conté també una llista de problemes de dificultat creixent que van entrenant
en 1'ds del llenguatge C. La idea és anar-los resolent, implementant i provant un darrera
I’altre fins on sigui possible. Us recomanem que en el vostre temps d’estudi els acabeu
de resoldre tots. L’objectiu final és anar aconseguint agilitat amb la sintaxi i les eines
de treball relacionades amb el llenguatge C.

1.2.1. Material necessari

e El vostre computador personal funcional amb sistema operatiu GNU/Linux, pre-
ferentment sobre el hardware real (no virtualitzat).

e Els paquets emacs, gcc, 1ibc6-dev installats.

1.2.2. Control de versions

Aquesta practica i totes les que segueixen cal desenvolupar-les amb el suport —obligatori—
d’un sistema de control de versions. El sistema a emprar és subversion, [3]. Ne-
cessariament cal hostatjar el diposit de versions a https://escriny.epsem.upc.edu.

La manera d’organitzar el diposit de versions és crear un sol projecte i tenir un directori
especific per cada practica. L’estructura de directoris que n’ha de resultar ha de ser
similar a la que s’observa a la figura 1.1. Recordeu que només se sotmeten a la disciplina
del control de versions els fitxers font del projecte i altres fitxers que defineixen el projecte
com ara els Makefile.

Doneu d’alta un projecte i el corresponent diposit de versions a escriny per a poder
gestionar les practiques.

https://escriny.epsem.upc.edu

pbn

Figura 1.1.: Estructura del diposit de versions pels problemes.

2.

2.1.

Sessio 1

Text d’estudi

Estudieu les segiients parts del llibre:

e Chapter 1: A Tutorial Introduction (llevat de 'apartat 1.10)

2.2. Preguntes per pensar

1.

2.

10.

11.

12.

13.

Quin paper juga el ;7 Es un separador de senténcia o un final de senténcia?

Quan posem claus {} i per quina raé les posem? Quin sentit gramatical tenen?

. Quina diferencia hi ha entre aquestes dues constants: ’a’ i "a"?
. Quina diferencia hi ha entre aquestes dues constants. 3 i 3.07

. A la pagina 21 hi ha una regla sintactica per a la sentencia condicional. D’acord

amb aquesta regla, els parentesis que hi ha darrera I'if, sén obligats? formen part
de 'expressi6?

. Que és una expressié? i una sentencia?

Que és una funci6? Com la definiries?

. Quines diferéncies hi ha entre una taula (array en angles) i una llista?

. Per que la funci6 getchar() retorna un int?

Que és un argument (o actual parameter) i qué és un parametre (o formal para-
meter).

Com funciona el mecanisme de pas de parametres per valor?
Que és un prototip? per que deuen existir?

Que n’opines de l'estil de programaci6é d’aquest capitol?

2.3. Exercicis practics

ExEeRrcict 2.1 Dissenyeu i implementeu un programa en C99 que escriu pel canal de
sortida la frase "Mort! qui t’ha mort?".

Exgercict 2.2 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada un enter n seguit d’'un caracter c i escriu pel canal de sortida el caracter
repetit n vegades.

Exgercict 2.3 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada una frase acabada en el caracter punt i escriu pel canal de sortida quantes
vegades apareix la lletra ’a’.

ExXERcICI 2.4 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada un byte en format hexadecimal i n’escriu les representacions en base 2, 8 i
10 pel canal de sortida. El programa cal que es digui converteix.

L’exercici és més interessant si en feu dues versions:

1. Una en que el calcul de la nova representacié I'implementeu <a pel> en el mateix
programa.

2. Una altra en que aprofiteu tant com sigui possible les conversions de format que
ofereix la funcié printf() de la llibreria de C.

EXERcICI 2.5 Dissenyeu un programa que llegeix del canal d’entrada un real § i escriu
ben formatada una taula de conversié de graus Celsius a graus Fahrengheit entre 0°C i
100°C.

ExERcICI 2.6 Dissenyeu i implementeu un programa que llegeix un text acabat en EOF i
I’escriu comprimint els espais. Es a dir, quan troba més d’un espai seguit els substitueix
per un sol espai.

ExEeRrcicr 2.7 Dissenyeu i implementeu un programa que llegeix un text acabat en EOF
i escriu un histograma de les longituds de les linies. Es a dir, per cada linia llegida escriu
una linia amb la longitud de la linia llegida seguida de tants asteriscs com caracters tenia
la linia.

Per exemple, si es llegeix la linia

In Springfield, they’re eating the cats!
hauria d’escriure

ExEeRrcict 2.8 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada els coeficients d’una equacié de segon grau i escriu pel canal de sortida la
seva solucid.

Exgercict 2.9 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada un preu en euros i escriu pel canal de sortida el desglos minim en moneda
que correspon al preu.

3.

Sessio 2

3.1. Text d’estudi

Estudieu les segiients parts del llibre:

e Chapter 2: Types, Operators and Expressions

3.2. Guia de lectura

1.

10.
11.

12.

Que és un tipus de dades? I que és un valor d’un tipus? I la representacié d’'un
valor? Tots els valors d’un tipus tenen la mateixa representacié? Hi ha una sola
representacio possible d’un valor d’un tipus?

. Tipus i representacié. Quina relaci6é tenen? Sén rellevants per l'etapa de disseny

d’un programa? Tenen relacié amb el concepte d’objecte (en el sentit de 'orientacié
a objectes)?

. Constants vs variables amb qualificador const. Quines similituds i diferéncies

tenen?

. Que significa que quelcom sigui <implementation-defined>? Podem basar un pro-

grama en quelcom que és <implementation-defined>? Per que?

. Que és la precedencia —també dita prioritat— i ’associativitat d’un operador?

Per que existeixen?

. Que és un operador unari?

Per que I'operador de postincrement es diu que actua via efecte lateral?

. Per que 'operador >>> sobre tipus integrals amb signe generalment comporta <ex-

tensié de signes> (arithmetic shift)?

. Per que D'assignacié és un operador a C en comptes de ser una senténcia com

habitualment?
Quina diferencia hi ha entre les operacions & i && ?
Quina diferencia hi ha entre un operador i una operacio?

Que és un cast?

10

13. Que és un operador relacional? I un operador logic?

14. Quina és el sentit de les operacions bitwise?

3.3. Exercicis practics

ExErcict 3.1 Afegiu opcions al programa resultant de l’exercici 2.4 de manera que
converteix -b converteixi només a binari, converteix -o a octal i converteix -d a
decimal.

Aquest exercici requereix investigar com es traslladen a un programa C els parametres
amb que es crida des de la shell de Unix.

ExERcICI 3.2 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada una paraula de 2B en hexadecimal i escriu per la sortida la mateixa paraula
després d’haver forcat sengles zeros els bits de més i menys pes. En tot moment la
paraula caldra emmagatzemar-la com a tal i no com una cadena de caracters o com una
taula.

Per exemple, si I’entrada és Oaaa la sortida hauria de ser 8aab.

Exgercict 3.3 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada una paraula de 2 B en hexadecimal i escriu per la sortida el resultat d’extreure
el byte que va dels bits 4 al 11 (el bit de menys pes és el bit 0). En tot moment la
paraula i el byte caldra emmagatzemar-la com a tal i no com una cadena de caracters o
com una taula.

ExERCICI 3.4 Dissenyeu i implementeu un programa en C99 que llegeix pel canal
d’entrada una seqiiencia binaria codificada en hexadecimal i acabada en un byte 0 i
escriu pel canal de sortida el nombre de bits amb valor 1 d’aquesta seqiiencia.

ExErcict 3.5 Considereu que un senyal analogic entre —1,0V i 1,0V el mostregeu a
100,0 Hz i codifiqueu digitalment el resultat sobre 1B en complement a 2. Una cadena
de 100 B, doncs, representa 1s d’aquest senyal. Assumiu que treballem sempre amb
segments d’1 s que els representem com a cadenes hexadecimals.

Dissenyeu i implementeu un programa en C99 que llegeix pel canal d’entrada un seg-
ment de senyal i escriu pel canal de sortida un altre senyal de la mateixa natura que
I’anterior amb un pols d’amplitud 1V i 20 ms de durada quan el primer senyal fa un pas
per zero.

ExXERcICI 3.6 Dissenyeu un programa que llegeix un enter k& d’un byte de longitud,
seguidament en calcula —k assumint que es representa en complement a 2 i sense fer
servir operacions aritmetiques. Finalment escriu el resultat.

L’objectiu és manipular a nivell de bit la representacié en complement a 2 d’un enter.

11

ExEeRrcict 3.7 Dissenyeu un programa que determini els valors minim i maxim del
domini dels tipus segiients: short, unsigned short, int i long. Feu-ho de dues maneres:

1. Fent servir <1limits.h>.

2. Calculant-los mitjancant operacions bit a bit (desplagaments i complements).

EXERcICI 3.8 Escriviu una funcié amb prototip int es_potencia2(unsigned x) que retorni
1 si x és una potencia de 2 i 0 en cas contrari. Feu servir només operadors bit a bit i
comparacions. Proveu la funcié.

12

Part Il.

Notes sobre C

13

4. Tutorial C99

El llenguatge de programacié C té un paper fonamental en aquesta assignatura. Hi ha
molta i molt bona literatura sobre el llenguatge C, especialment en la seva variant C89.

Com a bibliografia recomanem [6], que hauria de ser un dels llibres de capcalera. En
segona instancia també els llibres lliures [1, 2] i els apunts [7] poden ser d’utilitat.

A mode de xuletari, el triptic [9], és d’allo més practic.

Finalment, molts llibres sobre la disciplina dediquen capitols a introduit el llenguatge
C. Aquest és el cas de [§]

En aquest apendix només hi trobareu un resum molt breu i sintetic dels aspectes més
interessants en I'ambit d’aquest document que incorpora ’estandard C99. Les raonsi la
logica dels canvis que incorpora C99 respecte C89 estan documentades a [5].

4.1. Primer exemple

Un programa codificat en C és una colleccié de funcions una de les quals té un nom
privilegiat, main(), i actua com a programa principal. La figura 4.1 és un programa en
C que conté una funcié i un programa principal.

Si aquest programa el contingués el fitxer senzill.c, el compilariem i muntariem amb
la comanda:

$ gcc —std=c99 —o senzill senzill.c
i tot seguit provariem d’executar-lo fent:
$./senzill

L’executable cal prefixar-lo per nom del directori ates que les shells de UNIX només
cerquen executables en els directoris que indica la variable d’entorn PATH. Habitualment
el directori de treball no forma part d’aquesta colleccié de directoris. Per tant cal
explicitar on és el fitxer executable. En aquest cas usem un cami relatiu.

4.2. Variables i tipus escalars

4.2.1. Variables i tipus
Les declaracions de variables tenen aquest aspecte:

int x, y;

14

#include <stdio.h>
#include <assert.h>

int dobla(int x) {
int r;

r—=x % 2;
return r;

}

int main() {
int v, n;

n = scanf("%d", &v);
assert(n == 1);

printf("%d\n", dobla(v));

return O;

Programa 4.1: Programa senzill en C99

i poden océrrer en qualsevol lloc del codil. Com es veu, primer s’escriu el tipus de dades
i a continuacié una llista d’identificadors de variable.
Els tipus de dades més corrents sén els segiients:

Tipus Significat Exemple

bool Un boolea. Cal incloure préviament el header #include <stdbool.h>
stdbool.h. bool b; b = false;

char Un caracter (no una cadenal) charc; c = a’;

short Un enter “curt”. Habitualment 16 bit. short x; x = 67,

int Un enter habitualment de 32 bit inti;i =—12;

long Un enter llarg. Habitualment de 64 bit long |; | = 3L;

float Un real de precisio simple float x;

x = 23.45; x = 2.0e—13;

Les mides dels tipus depenen de la plataforma i el compilador. Per tant no sén
portables. El header limits.h defineix una serie de constants que permeten coneixer els
limits de cada tipus de dades.

La taula 4.1 mostra la classificacié habitual dels tipus escalars de C99.

Els tipus disposen d’operacié de conversié de tipus explicita (cast):

'Es una caracteristica apareguda a C99

15

Classificacio Tipus

Integrals Boolea bool
Caracter char
Enter Ordinari ~ Amb signe short
int
long

Sense signe unsigned short
unsigned int
unsigned long

Mida fixa Amb signe int8_t
intl6_t
int32_t

Sense signe uint8_t
uintl6_t
uint32_t

Reals Flotant float
double

Taula 4.1.: Classificacié dels tipus escalars de C

int i;
short s;

i =78;
s = (short)i;

De la mateixa manera, existeixen un conjunt de regles de conversié que s’apliquen de
forma automatica (coercz'on)2. En general un tipus promociona automaticament a un
tipus de grandaria superior. Cal, pero, tenir cura quan es barregen tipus amb i sense
signe. Es una font important de problemes i cal anar amb peus de plom.

Tots els tipus enters disposen de la versié sense signe. El tipus sense signe associat
a un tipus amb signe es construeix prefixant amb unsigned. També es poden definir
constants sense signe usant el sufix U a tal efecte. Per exemple:

unsigned int i;

i = 34U;

Sorprenentment, el tipus char es considera amb signe i, per tant, existeix el tipus
unsigned char.
També és possible usar constants enteres escrites en base 23, 8 i 16:

unsigned int x;

2Noteu la diferéncia de significat entre cast i coercion.
3A partir de €99.

16

x = 0b010; // binari
x = 0347; // octal
x = 0x3af; // hexadecimal

Per evitar la manca de portabilitat dels tipus de dades pel que fa a la seva longitud,
C99 defineix un conjunt de tipus amb la mida ben definida. Per usar-los és imprescindible
incloure el header stdint.h. Els tipus en qiiestié sén uint8_t, uintl6_t, uint32_t i els seus
corresponents amb signe int8_t, intl6_t i int32_t, que com el seu nom indica corresponen
a mides de 8bit, 16bit i 32bit respectivament. Cal usar aquests tipus quan ens cal
representar quelcom que ha de tenir una longitud fixada, per exemple un port o un
registre.

La funcio predefinida sizeof permet consultar en temps d’execucié la mida de qualsevol
tipus. El resultat es dona usant com a unitat la mida d’un char. Aixi, per exemple,
pot succeir que sizeof(int) sigui 4, indicant que un int ocupa 4 char’s. La mida en bits
d’un char es pot consultar emprant la constant de limits.h anomenada CHAR_BIT. Molt
sovint CHAR_BIT==8.

4.2.2. Operacions

A C l’assignacié es considera una operacié que, per efecte lateral, modifica el contingut
d’una variable. Aixi, per exemple, x=3 és una operacié que modifica el valor de la
variable x i, a la vegada, val 3. D’aquesta forma, es pot escriure y=(x=3) o, traient els
paréntesis y=x=3, que té I'efecte d’assignar el valor 3 tant a x com a y.

Les operacions sobre el tipus bool sén les habituals:

Operacié Significat

|l Disjuncié booleana (OR).
&& Conjunci6 booleana (AND).
! Negaci6 booleana (NOT).
== Igualtat.

1= Diferencia.

Sobre els tipus integrals (enters), les operacions es classifiquen en:

e Operacions aritmetiques:

Operacié Significat

Suma.
* Producte.
- Resta o canvi de signe.
/ Divisi6 entera quan ambdods operands sén enters.
A Modul.

e Operacions booleanes:

17

Operacié Significat

== Igualtat.
I= Diferéncia.
>, >=, <, <= Comparaci6

e Operacions bit a bit:

Operacié Significat

>> Shift dreta. Amb extensié de signe si el tipus és signed.

<< Shift esquerra. Amb extensié de signe si el tipus és signed.
- Complement.

& AND bit a bit.

| OR bit a bit.

OR exclusiva bit a bit.

Els enters i booleans disposen a més d’operacions de modificacié, que combinen 1’as-
signaci6 i una operacié especifica. Per exemple, les dues operacions segiients sén equi-
valents:

X = 2:
X =X % 2;

De manera similar, es disposa d’operacions d’auto increment/decrement. Aixi, i++
significa: “avalua i i, posteriorment, incrementa el seu valor”. Aixo es coneix com
post-increment. De manera simetrica, el pre-increment ++i significa “incrementa i i
avalua-la”. D’acord amb aix0 el seglient fragment de programa és tal que en acabar
a==128, ra==128, b==128 i rb==127.

int a, b, ra, rb;

a=b=127;
ra = ++a;
rb = b4++;

També disposem d’operadors de pre i post-decrement amb la sintaxi esperable: j—— i
—j.
En el cas dels reals en coma flotant, les operacions aritmetiques basiques sén:

Operacié Significat

Suma.
* Producte.
- Resta o canvi de signe.
/ Divisié real quan un dels operands és real.

A banda de les operacions elementals, si s’inclou el header math.h es pot accedir a una
colleccié d’operacions i funcions més amplia. Aquesta colleccié inclou funcions com:

18

Operacié Significat

sin, cos, tan Funcions trigonometriques.

sqrt Arrel quadrada.
exp Exponenciacio.
log Logaritme natural.

En qualsevol referéncia com ara la Viquipedia i, naturalment 'estandard [4], trobareu
la documentacié completa.

4.2.3. Algunes transgressions

De fet a C és corrent, pero delicat, tractar indiscriminadament qualsevol tipus enter com
si es tractés d'un boolea i confondre deliberadament caracters i enters. Les conversions
entre tipus faciliten aquesta practica.

Pel que fa als booleans, qualsevol tipus integral pot ser considerat un boolea sota la
premissa de que el valor 0 cal entendre’l com a false i la resta de valors com a true. Aixi,
el segiient exemple és plenament valid:

int i;

bool b;

b = false; i = 33;
if (b ||)
printf("Aja!");
Seguint amb les transgressions, també es comu entendre els char com a enters «petits>.

En el segiient exemple, el programador tracta la variable c sense donar-li en cap moment
el significat de caracter:

char c;
int i;

c = 34;
i+=c¢

En casos com aquest és més interessant usar una variable de tipus int8_t en comptes de
char.
4.2.4. Prioritat i associativitat dels operadors

Atesa la quantitat d’operadors diferents emprats a C, la interpretacié de les expressions
pot ser dificil i cal tenir a ma la taula de prioritats i associativitats. La taula 4.2 mostra
aquesta informacio.

19

Prioritat Operador Associativitat

1 ++, —— (post) LR
[, 0
L —>

2 +4, —— (pre) RL
+, —, *, & (unaris)
(cast), 7, !

3 %, /, % (multiplicatives) LR
+, — (additives)

4 >>, <<

5 > >=, <, <=

6 ==, I=

7 &

3 R

9 |

10 &&

11 I

12 ?7: (expr. cond.) RL

13 =, +=, *=, etc.

14 , (coma) LR

Taula 4.2.: Taula de prioritats i associativitat dels operadors C.

4.3. Implementacié de moduls

4.3.1. Esquema basic

Aquesta seccié descriu la forma d’implementar el concepte de modul usat en el disseny
d’una aplicacié a I'entorn de C. Tot i que hi ha diversos esquemes possibles de treball,
aqui se’'n presenta només un d’especific que és prou general i ortogonal.

La idea és aprofitar la possibilitat de fer compilacié separada per implementar moduls
seguint un esquema d’organitzacié ben establert. Entenem que un modul és un con-
tenidor de funcions, constants i tipus de dades que poden ser usats per altres moduls.
Addicionalment un modul defineix un espai de noms privat que permet ocultar detalls
d’implementacié a la resta dels moduls que composen un projecte. Un modul, doncs, té
una part publica i una part privada.

L’organitzacié que es proposa implementa un modul sobre dos fitxers, un header i un
fitxer de codi c¢. El primer conté la part publica del modul mentre que els segon conté

20

la part privada. Vegem-ho en una serie d’exemples.

Suposem que el modul modl, per exemple, és un modul funcional que implementa
dues funcions publiques: inc() i dec(). La implementacié d’aquestes funcions és privada.
Aleshores la forma d’implementar el modul és escriure dos fitxers. El primer, un fitxer
de headers I’anomenem mod1l.h i té aquesta forma:

#ifndef MOD1_H
#define MOD1_H

void inc(int xconst i);
void dec(int xconst i);

#endif

L’estructura d’un header és sempre la mateixa. Primer hi ha un paréntesi format per
les sentencies de preprocessador #ifndef i #endif que impossibilita una doble inclusié
d’aquest header en un fitxer. Tot i que pot semblar excessiu, és possible que es doni una
doble inclusié ates que en un fitxer determinat es pot incloure indirectament el mateix
header per diversos camins i ser dificil de detectar. Aquest parentesi, que cal escriure
sempre, evita aquest problema. Noteu que el simbol MOD1_H ha de ser particular de
cada modul. Aixi, si el modul es digués az34, per exemple, usariem el simbol AZ34_H.

A linterior del parentesi, en aquest cas, el modul conté les capcaleres de les funcions
publiques. Noteu que les capgaleres sén imprescindibles per a que el compilador pugui
saber si les crides a aquestes funcions sén correctes.

Pel que fa a la part privada del modul, la escriuriem en el fitxer modl.c, que tindria
aquest aspecte:

#include "mod1.h"

static int suma(int k, int v) {
return k + v;

}

void inc(int xconst i) {
*i = suma(*i, 1);

}

void dec(int xconst i) {
*i = suma(*i, —1);

}

Noteu que, de forma una mica artificial, s’ha usat una funcié privada del modul per
implementar dec() i inc(). Aquesta funcié, suma(), s’a declarat com static per fer-la
privada i, naturalment, el seu prototip no apareix al fitxer mod1.h.

Si des de la implementacié d’un segon modul, posem que és modu.c, es volen usar les
funcions de modl, cal simplement afegit I'include escaient i cridar-les on convingui:

21

#include <stdio.h>
#include "mod1.h"

int main() {
intv =3;

inc(&v);
printf("%d\n", v);

return O;

}

Per compilar aquest exemplet simplement caldria fer:

$ gcc —std=c99 —I. —c modl.c
$ gcc —std=c99 —I. —c modu.c
$ gcc —std=c99 —o modu modu.o modl.o

o bé, en una sola ordre fent:

$ gcc —std=c99 —I. —o modu modu.c modl.c

4.3.2. Singleton

Un singleton en la terminologia d’orientacié a objectes és un objecte del que només
n’existeix una sola instancia en una aplicacié. Molt sovint s’usen els moduls per a
implementar aquest concepte. Imagineu que en una aplicacié feta de diversos moduls
hi ha un tnic comptador que s’incrementa de 5 en 5 i es decrementa de 3 en tres. Del
comptador la tnica informacié 1til és saber si és positiu o negatiu. Aquest comptador
es pot implementar com un modul que exporta les operacions indicades i que encapsula
la representacié del comptador de manera privada.

La implementacié del header seria la seglient si assumim que correspon al fitxer
compt.h:

#ifndef COMPT_H
#define COMPT_H

#include <stdbool.h>
void inc(void);
void dec(void);

bool is_positive(void);

#endif
Noteu:

22

e Només conté els prototips de les funcions publiques pero cap referéncia a la imple-
mentacié del comptador.

e Inclou el header stdbool ates que s’usa el tipus bool.

La implementacid, desada en el fitxer compt.c seria la seglient:

#tinclude "compt.h"
static int comptador = 0;

void inc(void) {
comptador +=5;

}

void dec(void) {
comptador —= 3;

}

bool is_positive(void) {
return comptador >= 0;

}

Noteu I'is de static per indicar que la variable comptador és privada i no pot ser usada
des de cap altre modul.

Usant aquest modul assegureu que no pot haver-hi cap altra copia del comptador en
un programa.

4.3.3. Classes

A vegades els moduls s’usen per implementar estructures similars en certa manera a
una classe: un tipus de dades acompanyat d’'un conjunt d’operacions. En aquests casos
tant el tipus de dades com les seves operacions sén publiques. Imaginem que volem
implementar un tipus que permeti definir piles d’enters de mida no afitada. Aleshores
el header del modul, que podriem anomenar stack.h, seria similar a:

#ifndef STACK_H
#define STACK_H

typedef void *stack;
stack push(stack p, int i);
stack pop(stack p);

int top(stack p);

stack empty(void);

F#endif

23

i la seva implementacid, sense tenir en compte possibles excepcions, correspondria a:

#include <stdio.h>
#include <stdlib.h>
#include "stack.h"

typedef struct sc {
int v;
struct sc *xnext;
} cell_t;

stack empty(void) {
return NULL;

}

stack push(stack p, int i) {
cell_t xc = malloc(sizeof(cell_t));
c—>Vv =1;
c—>next = p;
return c;

}

stack pop(stack p) {
cell_t xc = ((cell_t *)p) —> next;

free(p);
return c;

}

int top(stack p) {
return ((cell_t x)p) —> v;

}

D’aquesta manera, qualsevol altre modul podria definir variables de tipus stack i operar
amb elles fent:

#include "stack.h"

stack s = empty();

s = push(s,30);

s = push(s, 10);
printf("%d\n", top(s));
s = pop(s)

24

Bibliografia

1]

Mike Banahan, Declan Brady i Mark Doran. The C Book. Angl. 2a ed. Addison-
Wesley, Pearson Education, 1991. URL: http://publications.gbdirect.co.uk/
c_book (cons. 08-02-2017).

Mark Burgess i Ron Hale-Evans. The GNU C Programming Tutorial. Angl. 4.1.
2002. 290 pag. URL: http://www.crasseux.com/books/ctut.pdf (cons. 08-02-2017).

Ben Collins-Sussman, Brian W. Fitzpatrick i C. Michael Pilato. Version Control
with Subversion. Angl. Vers. 1.7. 2011. URL: http://svnbook.red-bean.com/en/
1.7/svn-book.pdf (cons. 20-02-2019).

Joint Technical Committee ISO/TEC JTC 1, Subcommittee SC 22, Working Group
14. Draft of the C99 standard with corrigenda TC1, TC2, and TC3 included. Angl.
Draft standart ISO/IEC 9899:TC3. ISO/IEC, 2007. 519 pag. URL: http://www.
open-std.org/jtcl/sc22/WG14/www/docs/n1256.pdf (cons. 08-02-2017).

Joint Technical Committee ISO/TEC JTC 1, Subcommittee SC 22, Working Group
14. Rationale for International Standard — Programming Languages — C. C99. Angl.
Rationale. Vers. Revision 5.10. ISO/IEC, 2003. 224 pag. URL: http://www.open-
std.org/jtcl/sc22/wgld/www/C99RationaleV5.10.pdf (cons. 08-02-2018).

Brian Kernighan i Denis Ritchie. The C Programming Language. Angl. 2a ed.
Addison-Wesley, Pearson Education, 1988. 274 pag. 1sBN: 9780131103627.

Nick Parlante. Essential C. Angl. 2003. 45 pag. URL: http://cslibrary.stanford.
edu/101/EssentialC.pdf (cons. 08-02-2017).

David Russell. Introduction to Embedded Systems. Using ANSI C and the Arduino
Development Environment. Angl. Synthesis Lectures on Digital Circuits and Sys-
tems 30. Morgan & Claypool Publishers, 2010. 255 pag. 1SBN: 9781608454983. DOI:
10.2200/S00291ED1V01Y201007DCS030.

Joseph H. Silverman. C' Reference Card (ANSI). Angl. 1999. 2 pag. URL: http:
/ /www . math . brown . edu/ ~jhs /ReferenceCards /CRefCard . v2. 2. pdf (cons.
08-02-2017).

25

http://publications.gbdirect.co.uk/c_book
http://publications.gbdirect.co.uk/c_book
http://www.crasseux.com/books/ctut.pdf
http://svnbook.red-bean.com/en/1.7/svn-book.pdf
http://svnbook.red-bean.com/en/1.7/svn-book.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://cslibrary.stanford.edu/101/EssentialC.pdf
http://cslibrary.stanford.edu/101/EssentialC.pdf
https://doi.org/10.2200/S00291ED1V01Y201007DCS030
http://www.math.brown.edu/~jhs/ReferenceCards/CRefCard.v2.2.pdf
http://www.math.brown.edu/~jhs/ReferenceCards/CRefCard.v2.2.pdf

	Material flipped classroom
	Introducció
	Recomanacions per a l'estudi
	Recomanacions per als problemes
	Material necessari
	Control de versions

	Sessió 1
	Text d'estudi
	Preguntes per pensar
	Exercicis pràctics

	Sessio 2
	Text d'estudi
	Guia de lectura
	Exercicis pràctics

	Notes sobre C
	Tutorial C99
	Primer exemple
	Variables i tipus escalars
	Variables i tipus
	Operacions
	Algunes transgressions
	Prioritat i associativitat dels operadors

	Implementació de mòduls
	Esquema bàsic
	Singleton
	Classes

