
Systems Integration
Software and Information Technology Systems

Pere Palà

iTIC http://itic.cat

v1.0 October 2013

Source: A significant part is from Mark W. Maier and Eberhardt Rechtin’s The Art of Systems Engineering 3rd Ed

http://itic.cat


Introduction: The Status of Software Architecting

Introduction

I Software is becoming the centerpiece of complex system
design

I Developers of products are developing software
I Why?

I Ability to create intelligent behavior
I Ability to accomodate changing trends (technical, economical)

I Other fields may be more stable (physical architecture of
aircraft, spacecraft, cars)

Anecdotal Evidences

I From 70% Hard 30% Soft to 30% Hard 70% Soft

I Complete Systems-on-a-Chip (SOC). The differentiation
comes through Software

I From hardware designer to hardware integrator and software
developer



Information Technology

I Integration of computers and communications

I Trend: IT practice is not developing applications but
integrating preexisting applications

I Well-architected software can evolve
I Evolution of software is more rapid than evolution of hardware

(cost). Regular full replacement is feasible

I Software is flexible
I Good medium to implement system intelligence

I General purpose hardware
I Economies of scale: hardware is cheap

I General purpose software
I Operating systems, web applications
I Open-source and reusable code

I Software architecture is important!



Software Architecture and Trends

Software Architecture

I Structure of a software system: components and interfaces

I Plus: behavior, constraints and applications

Trends

I Software: from support role to centerpiece

I Hardware selection: depending on the ability to support
software (and not the converse!). AVR vs PIC

I BUT: The system (and not the software) is THE end product.
Client acquires the system, not the software!



Software as a System Component

I System architecture and software architecture

I Software provides abstractions for creating system behavior
(software layers)

I Software allows evolutionary delivery

I Software must be integrated into a hardware system

I There seems to be no successor to software as a tool to
implement behaviorally complex systems



Software for Modern Systems

Characteristics of modern systems

I Storage of large volumes of information and its
semiautonomous and intelligent interpretation

I Responsive human interfaces. Mask the underlying machine.
Operate in metaphor

I Semiautonomous adaptation to the behavior of the
environment and individual users

I Real-time control of hardware (faster than human) with
complex functionality

I Constructed from mass-produced computing components and
unique software (customizable)

I System coevolutions with customer. Experience changes
perceptions of what is possible



Software for Modern Systems /2

I High-level languages plus general-purpose computers →
complex, evolutionary systems at reasonable cost

I Achieving the same with hardware is orders of magnitude
more expensive. Evolution is more difficult.

I Software layers allow more behavioral complexity

I Trend: machine language, assembler, general-purpose (C,
Ada...), domain-specific (MATLAB, SQL...)

I Language models become closer to application

I Computational abstractions



Systems, Software and Process Models

I Challenge: integration needs of hardware and software

I Hardware is best developed with few iterations

I Software can and should evolve through iterations

I Hardware: well-planned design and production cycle.
Large-scale production deferred to the final delivery

I Software: requires access to the targeted hardware platform

I Software distribution costs are low. Except if certification is
required

I Hardware changes?



Waterfalls for Software?

I Hardware: process chosen is usually waterfall. Iterations are
local to each phase

I Software can use a waterfall model: design, coding, test and
delivery

I Spiral model is the usual choice. All successful software
systems are iteratively developed and delivered

I Spiral may help fixing problems discovered in the field
I Waterfall tries to avoid them with good requirements.

I Communication protocols may be not precise enough, not fully
implemented

I Therac 25



Spirals for Hardware?

I Spiral for hardware means frequent prototyping

I For systems which are one-of-a-kind, a prototype is a full
system!

I Prototype parts of the system

I Build scale models

I For mass-produced systems prototype cost may be reasonable

I Have to be built on production lines similar to the final one.
Also expensive



Integration: Spirals and Circles



Iterations

I Stable hardware forms should appear early

I Software iteration: aiming at release 1.0 for production
hardware

I Hardware-software codesign: make physical prototypes
unnecessary. A log way to go!

I Software: Do the hard parts first



Hierarchy

I Systems can be viewed in hierarchies
I System composed of subsystems composed of small units
I A system may be embedded in higher-level systems becoming

a component
I Decomposition in design, integration in reverse

I This view may not match software development
I Object-oriented abstractions
I Layers
I Infrastructure objects (databases, operating systems)



Objects

I Collection of functions and data

I Objects run concurrently with other objects

I May run on different machines

I Number of objects may be unknown. Determined at runtime

I May work in a network, in arbitrary numbers, depending on
events



Layers

I Are a form of hierarchy

I But lower-level elements do not appear at the higher level!

I Within a layer, objects are peers: not contained one in another

I Middleware layer: objects

I Some middleware services provided by OS. Other by external
software units

I Software hierarchy becomes disconnected of hardware
hierarchy. (This is THE objective)



Infrastructure Objects

I Large objects: operating systems and databases

I Millions of lines of code. Rich functionality

I Architect has to adapt to these components (or develop his
own??)



Hierarchies Reconciled

I Software is biggest part of cost → Adopt software view. Not
necessarily!

I Much software is not object-oriented but procedurally
structured

I Hierarchical view and layered view are alternate views –not
exclusive

I Each partitioning has advantages and disadvantages
I Autonomous pieces are (sometimes) attractive: Have their own

software, may be independently developed...



The Role of the Architect

I Architect is the user’s advocate

I Responsible for what-it-does and how-it-does. With a limit:
up to the system concept.

I Look at the software and the underlying hardware as an
integrated whole that delivers value to the user

I Make the system evolvable by paying attention to the
interfaces



Programming languages

I Languages influence, guide and restrict our thoughts

I Some problems decompose easily in one language and with
difficulty in others

I Each language encapsulates lower-level languages

I Statements in C, statements in Octave, SQL statements...

I Programmers deliver the same number of lines of code per
day, regardless of the language they are writing in

I Use languages that require few lines of code



Architectures

I Architecture: Macintosh’s desktop

I Defines type of information, much of the processing
I Operation is human-centered
I Software is built around a main event loop

I Metaphor of desktop: its elements should behave as real
elements on a desktop



Heuristics

I Choose components so that each can be implemented
independently of the internal implementations of all others

I Programmer productivity in lines of code per day is largely
independent of language

I The number of defects remaining undiscovered after a test is
proportional to the number of defects found in the test. The
constant of proportionality is rarely less than 0.5

I Low delivered defect rate can be only achieved by low defect
insertion rate and by layered defect discovery

I Software should be grown or evolved, not built

I The cost of removing a defect rises exponentially with the
number of development phases since it was inserted

I Do not fix bugs later; fix them now

I Personnel skill dominates all other factors in productivity and
quality


