
Systems Integration
Case Study - From Hierarchical to Layered Systems

Pere Palà

iTIC http://itic.cat

v1.1 October 2015

Source: A significant part is from Mark W. Maier and Eberhardt Rechtin’s The Art of Systems Engineering 3rd Ed

http://itic.cat


Introduction

First fact

I Software is naturally constructed as a Layered System
I In contrast to classic systems engineering: Hierarchical Systems

Case Study: MedInfo

I Makes medical imaging systems: x-ray, computed tomography
(CT), magnetic resonance imaging (MRI)

I Clients: hospitals and clinics worldwide

I They are integrated into the user’s technical infrastructure (so
far as possible)

I Starting point: each system is designed, manufactured, sold
and operated as a stand-alone system

I Business progression
I Upgrades to systems and introduction of new imaging systems
I Each product has own product manager
I Each product has its chain of suppliers



Motivation for Change

I Incremental improvement is feasible with current structure.
But...

I Software cost
I Hardware-dominated cost to software-dominated cost. Now it

is 70%
I Hardware: commodity. Available through subcontracting
I Competitive differentiation comes from software
I User demands: processing algorithms, display, customization
I Need for interconnection and integration

I User demand for interconnection and integration
I Radiologists need different imaging technologies during one day
I Different computers? File transfers?
I Simple integration: A single viewer platform, move data to

common platform
I Complex integration: combine, overlay or jointly process

images from different systems



Motivation for Change /2

I Shorter product cycles
I Competition makes new products faster
I Need to match expectations

I Lateral and vertical product space expansion
I Pressure to grow
I To be integrated into medical information systems...
I ...means:
I Try to expand your boundaries
I Or others may expand them
I Integrated system markets may become “winner take all”

markets



Layered Alternative

I Becoming software-dominated (in cost) means that different
products share software

I Networking
I Data storage
I User interface

I Integration means protocol sharing (code sharing)

I Build layers isolating parts that change from each other

I Hierarchical system decomposition and end-to-end product
managers make it difficult to discover and manage shared code



Original View

X-ray
Software
Stack

MRI
Software
Stack

CT
Software
Stack

X-ray
Imaging
Unit

MRI
Imaging
Unit

CT
Imaging
Unit



Layered View



Layered Systems

I Products may (or not) look as before

I Client wishes stand-alone system: ok

I Client wishes integrated system: ok

I Hierarchical: a lower-level element is part of a higher-level
element

I Layered: a lower-layer element provides services to a
higher-layer element

I Idea borrowed from ISO’s Open System Interconnect



Transition

I End-to-end management responsibility changes
I In stovepipe organizations an individual is responsible for the

product
I Problem → Fix for the product

I When something goes wrong, who is responsible for the fix?

I Product manager has no control over all elements

I Problems have to be solved at a level lower than CEO

I Financial decisions are at CEO level
I Quality management?

I Some quality thresholds may be different for different products
I How to enforce standards when they do not relate to customer

perceived quality (but have cost)?

The quality requirements on the components of a shared layer are
likely to be much more demanding than when those components
are not shared



Transition /2

I Development of automated software tests

I Shared libraries with assertions: Predicates indicating that
something has to be true

I Subcontracting / Outsourcing
I Specification of a layer is different than specification of a box
I Is expertise in specifying in-house?
I Test and integration. How? Each subcontractor buys licenses?

etc
I What if subcontractor goes out of business / drops support /

releases a poor version?



Conclusions

I Layered architecture can drop total lines of code

I But: overhead of a new development environment

I Can allow integration

I But: can be a long way

I If layers isolate areas of change faster product evolution may
happen. Choose good invariants (e.g. TCP/IP)

I Transition will be painful (related to the human rather than
the technical side)


