Systems Integration
4 - Builder-Architected Systems

Pere Pala

iTIC http://itic.cat

v1.2 September 2016

Source: A significant part is from Mark W. Maier and Eberhardt Rechtin's The Art of Systems Engineering 3rd Ed


http://itic.cat

Form-First vs. Function-First
Form-First

» Begins with a builder-conceived architecture (not
client-accepted purposes)

» Architects are members of the technical staff of the company

Incremental Developments

> New product as a variation of existing one
» If original is ok, variations/extensions are low-risk

» Key: Identify the critical architectural features to keep
advantage in the market
Judgement of value

» Function-First (purpose driven): Value is stated before

» Form-First (form driven): Value is stated after



Innovative Developments

New markets for existing products

» New product requires partial re-architecture
> Try to preserve the existing product line

» Example: basic product with options

New products for new markets

» Higher risk: changes in kind rather than in degree

» Often triggered by radically new technologies (jet engines,
new materials, microprocessors, lasers ...)

» Greatest risk is timing:

» Too early
» Too late



Technological Substitutions within Existing Systems

Much more complexity than foreseen

> It is not just a matter of substituting components from old to
new technology
» Factory workers with machines
» Vacuum tubes with transistors
» Large inventories with just-in-time

v

Evolution is a combination of elements
» e-global community: packet switching, fiber-optic lines, www,
e-commerce

v

Manufacturing management

v

Financing

v

Regulations

v

Environmental impact



Uncertainties and Risk

Uncertainty of end purpose

» Errors in decisions: design, development, production

» Solutions looking for a problem. Perhaps the wrong problem

Reducing risks

» Build and maintain options

» Options to stop at known points
» Options for additions
» Options to isolate troubled sections

> Use open architectures. You will need them once the market
starts to respond

» Pause and reflect



Architecture and Competition

No competition in classical architecting! Competition
strategies are

» Disrupt and dominate

» Great quality. Imagination. Options
» Put barriers to competition who may have an agile response

> Agile response
» Exploits (not disrupts) the flux of the market
» Quick and effective response
» Fast architecting
» Organizational structure has to support agility
> Attrition
» Low-cost capital, low-wage labor, large distribution channels
For mature markets
Fails if there is a larger competitor...
...or there are quick changes

v vy



Reducing Risk via Intermediate Goals

» Plan intermediate goals

» Simulators, prototypes
» Build partial systems (demonstrators or models): assess if

customer’s view matches architect’s one
» They have to be well architected (and designed and built)

too!
» A failure can ruin the program
» A success does not imply success of the whole system

» Do the hard parts first. If not, high risk is maintained till the

end



What next

» First risk: lack of a successor

» Start-up companies may not have enough resources to support
more than one R&D project

» A good product will attract more competition

» The original product becomes a “commodity”

> Well established companies unable to win a contract for the
follow-on
» The positive aspects of the original system: architecture plus
organization may to be too slow to react when technologies
change or market needs change
» The present system is too engraved in the thinking. There do
not appear new options



Keep Control of the Critical Features

» Keep ownership of the basic features (disrupt and dominate)

» Operating systems, interface characteristics, communication
protocols, patents, exclusive agreements with suppliers or
distributors

» Good products are required but they must establish a new
standard

» Success invites competition: make competitors dependent
through licensing

» Successful architectures are proprietary, but open

» Personal computers

Microsoft licensed the operating system. Apple did not

» Expanding of clones was successful for Microsoft

» But too open is also a problem: IBM made the PC too open!
» Microsoft and Intel made balance between open and protection

v

» Too open: loose competitive advantage. Too closed: unable
to create synergies



Abandon Obsolete Architectures

» Well-established product-line architecture but is losing out
» Competitor provides a better way to do things

» Typewriters replaced by PCs
» Energy costs rise
» Worksations replaced by PCs

» Cannibalize the old architecture, including the organization
matched with it

» Xerox example: From copiers to “the document company”



Creating Innovative Teams. The Four Temperaments

» NT - The Rationals.

» SJ - The Guardians. Knowledge Seeking
Security Seeking » ENTJ - "The
» ESTJ - "The Supervisors” Fieldmarshals”
» ISTJ - "The Inspectors” » INTJ -"The
» ESFJ - "The Providers” Masterminds”
» ISFJ - " The Protectors” » ENTP - " The Inventors”
» SP - The Artisans. » INTP - "The Architects”
Sensation Seeking » NF - The Idealists. ldentity
» ESTP - "The Promoters” Seeking

ENFJ - " The Teachers”
INFJ - "The Counselors”
ENFP - " The Champions”
INFP - " The Healers”

ISTP - "The Crafters”
ESFP - " The Performers”
ISFP - " The Composers”

v VvYyy
v

v vy

Extraversion/Introversion. Sensing/iNtuition. Thinking/Feeling.
Perception/Judgment.



Creating Innovative Teams
Personalities

» NT personality preferred
» Systems Architect INTP
» Include an ENTP, ENTJ

The product of a single mind

» Single mind for modest-sized projects. Multidisciplinary team

» How are decisions taken? Diversity of view but unity of
decision
» Whole team has to be a single mind regarding the architecture

Innovative teams

» Informal creativity, easy interpersonal relationships, trust.
Believe in chief

» Diversity in specialization, in style, interests



Architecting Revolutionary Systems

> All have a clearly identifiable Architect

» Not conceived by consensus of a committee

Architect and Project Manager

» Architect: leads technical part

» Project Manager: involved with short term problems

Success

» Commonly not found where originally thought
» Macintosh computer: desktop publishing

> The killer app: a system usage so valuable that it, by itself,
drives the dissemination of the system

» Search for the killer app!



Heuristics for Architecting Technology-Driven Systems

» An insight is worth a thousand market surveys
» Success is determined by the customer, not by the architect

» In architecting a new program, all the serious mistakes are
made in the first day

» The most dangerous assumptions are the unstated ones

» The choice between products may well depend upon which set
of drawbacks the users can handle best

> As time to delivery decreases, the threat to user utility
increases

» If you think your design is perfect, it is only because you have
not shown it to someone else

> If you do not understand the existing system, you cannot be
sure you are building a better one

» Do the hard parts first



Heuristics for Architecting Technology-Driven Systems/2

>

Watch out for domain-specific systems. They may become
traps instead of useful system niches, especially in an era of
rapidly developing technology

The team that created and built a presently successful
product is often the best one for its evolution —but seldom for
creating its replacement. (It may be locked into unstated
assumptions that no longer hold)

Good products are not enough. (Their features have to be
owned)

Implementations matter. (They help establish architectural
control)

Successful architectures are proprietary but open. (Maintain
control over the key standards, protocols, etc., that
characterize them but make them available to others who can
expand the market to everyone's gain)

Use open architectures. You will need them once the market
starts to respond



