Systems Engineering

Magnetic Coupling

Pere Palà

iTIC http://itic.cat
v1.1 February 2024

Simple loop

Magnetic Flux

- Lenz's Law $V_{1}=\frac{d \phi}{d t}$
- Flux traversing the area
- Proportional to the number of flux lines traversing the area
- Bigger if the area is bigger

Inductance

- If there is a current I_{1}
- $\phi=L I_{1}$
- $v=L \frac{d i_{1}}{d t}$

Generated Voltages

- Rotating loop in a constant field

- Dynamic microphone

Inductance of Selected Elements

- Solenoid

$$
B=\mu \frac{N i}{l}
$$

$$
V=N \frac{d \phi}{d t}=\{\phi=A B\}=N A \mu \frac{N}{l} \frac{d i}{d t} \Rightarrow L=\mu \frac{N^{2} A}{l}
$$

Inductance of Selected Elements /2

- Circular loop

$$
L=\mu a\left(\ln \frac{8 a}{r}-2\right)
$$

- single 1 mm dia 5 mm loop: 5 nH
- single 1 mm dia 10 mm loop: 15 nH

Inductance of Selected Elements /3

- Rectangular loop

RECTANGLE LOOP INDUCTANCE CALCULATOR

INPUTS

OUTPUT

Inductance: 1.26e-7 H

Two loops

What happens

- Far away, independent
- Close together, mutual coupling

Two loops close together

Mutual Coupling Equations

- $V_{1}=\frac{d \phi_{1}}{d t}$
- $V_{2}=\frac{d \phi_{2}}{d t}$
- ϕ_{1} has two components: $\phi_{1}=\phi_{11}+\phi_{12}$
- $\phi_{1}=L_{1} i_{1}+M_{12} i_{2}$

So, we get

- $v_{1}(t)=L_{1} \frac{d i_{1}}{d t}+M \frac{d i_{2}}{d t}$
- $v_{2}(t)=M \frac{d i_{1}}{d t}+L_{2} \frac{d i_{2}}{d t}$

Note: $M_{12}=M_{21}=M=k \sqrt{L_{1} L_{2}}$ with $k \leq 1$
When $k=1$ we speak of "perfect coupling"

Laplace domain

Time domain

- $v_{1}(t)=L_{1} \frac{d i_{1}}{d t}+M \frac{d i_{2}}{d t}$
- $v_{2}(t)=M \frac{d i_{1}}{d t}+L_{2} \frac{d i_{2}}{d t}$

Laplace domain

$$
\begin{aligned}
& -V_{1}(s)=L_{1}\left(s l_{1}(s)-i_{1}\left(0^{-}\right)\right)+M\left(s l_{2}(s)-i_{2}\left(0^{-}\right)\right) \\
& -V_{2}(s)=M\left(s l_{1}(s)-i_{1}\left(0^{-}\right)\right)+L_{2}\left(s l_{2}(s)-i_{2}\left(0^{-}\right)\right)
\end{aligned}
$$

Equivalent circuit

Laplace domain

- $V_{1}(s)=L_{1}\left(s l_{1}(s)-i_{1}\left(0^{-}\right)\right)+M\left(s l_{2}(s)-i_{2}\left(0^{-}\right)\right)$
- $V_{2}(s)=M\left(s l_{1}(s)-i_{1}\left(0^{-}\right)\right)+L_{2}\left(s l_{2}(s)-i_{2}\left(0^{-}\right)\right)$

The dots

A simple circuit

- $L_{1} s l_{1}=V_{G}-M s l_{2}$
- $L_{2} s I_{2}+Z_{L} I_{2}=-M s I_{1}$

$$
\left[\begin{array}{cc}
L_{1} s & M s \\
M s & L_{2} s+Z_{L}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
V_{G} \\
0
\end{array}\right]
$$

Solve for V_{0}

$$
\begin{aligned}
& I_{2}=\frac{-M s}{L_{1} L_{2} s^{2}+Z_{L} L_{1} s-M^{2} s^{2}} V_{G} \\
& V_{O}=\frac{Z_{L} M s}{\left(L_{1} L_{2}-M^{2}\right) s^{2}+Z_{L} L_{1} s} V_{G}
\end{aligned}
$$

If there is perfect coupling, i.e. $k=1, M=\sqrt{L_{1} L_{2}}$ then:

$$
V_{O}=\frac{M}{L_{1}} V_{G}=\sqrt{\frac{L_{2}}{L_{1}}} V_{G}=\frac{N_{2}}{N_{1}} V_{G}=n V_{G}
$$

Parameter n is called the turns ratio.
Note that $H(s)$ is a constant, i.e. it is frequency independent!

What is the impedance seen by the generator?

$$
I_{1}=\frac{L_{2} s+Z_{L}}{\left(L_{1} L_{2}-M^{2}\right) s^{2}+Z_{L} L_{1} s} V_{G}
$$

If $k=1$ then,

$$
\begin{gathered}
I_{1}=\frac{L_{2}}{Z_{L} L_{1}} V_{G}+\frac{V_{G}}{L_{1} s}=\frac{V_{G} n^{2}}{Z_{L}}+\frac{V_{G}}{L_{1} s}=\frac{V_{G}}{L_{1} s}+\frac{V_{G}}{\frac{Z_{L}}{n^{2}}} \\
V_{G} \bigcap_{-}^{+} \underbrace{+}_{-} L_{1} L_{1} \frac{Z_{L}}{n^{2}}
\end{gathered}
$$

- First term L_{1} depends on the magnetic coupling. No dc!
- Second term depends on the load

An equivalent circuit for the original circuit

Recall the ideal transformer

The original circuit (iff $k=1$) is equivalent to

