
Chapter 2
Application Layer

A note on the use of these PowerPoint slides:
²ŜΩre making these slides freely available to all (faculty, students,
ǊŜŀŘŜǊǎύΦ ¢ƘŜȅΩǊŜ ƛƴ tƻǿŜǊtƻƛƴǘ ŦƻǊƳ ǎƻ ȅƻǳ ǎŜŜ ǘƘŜ ŀƴƛƳŀǘƛƻƴǎΤ ŀƴŘ
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a lot of work on our part.
In return for use, we only ask the following:

Á If you use these slides (e.g., in a class) that you mention their
ǎƻǳǊŎŜ όŀŦǘŜǊ ŀƭƭΣ ǿŜΩd like people to use our book!)

Á If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2020
J.F Kurose and K.W. Ross, All Rights Reserved

Application Layer: 2-1

Computer Networking: A
Top-Down Approach
8th edition n
Jim Kurose, Keith Ross
Pearson, 2020

Application layer: overview

ÁPrinciples of network
applications

ÁWeb and HTTP

ÁE-mail, SMTP, IMAP

ÁThe Domain Name System
DNS

ÁP2P applications

Ávideo streaming and content
distribution networks

Ásocket programming with
UDP and TCP

Application Layer: 2-2

Application layer: overview

Our goals:

Áconceptual and
implementation aspects of
application-layer protocols
Åtransport-layer service

models
Åclient-server paradigm
Åpeer-to-peer paradigm

Álearn about protocols by
examining popular
application-layer protocols
and infrastructure
ÅHTTP
ÅSMTP, IMAP
ÅDNS
Åvideo streaming systems, CDNs

Áprogramming network
applications
Åsocket API

Application Layer: 2-3

Some network apps

Ásocial networking

ÁWeb

Átext messaging

Áe-mail

Ámulti-user network games

Ástreaming stored video
(YouTube, Hulu, Netflix)

ÁP2P file sharing

Ávoice over IP (e.g., Skype)

Áreal-time video conferencing
(e.g., Zoom)

ÁInternet search

Áremote login

ÁΧ

Q:your favorites?

Application Layer: 2-4

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

Creating a network app

write programs that:

Árun on (different) end systems

Ácommunicate over network

Áe.g., web server software
communicates with browser software

no need to write software for
network-core devices

Ánetwork-core devices do not run user
applications

Áapplications on end systems allows
for rapid app development,
propagation

Application Layer: 2-5

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Client-server paradigm
server:
Áalways-on host
Ápermanent IP address
Áoften in data centers, for scaling

clients:
Ácontact, communicate with server
Ámay be intermittently connected
Ámay have dynamic IP addresses
Ádo not communicate directly with

each other

Áexamples: HTTP, IMAP, FTP
Application Layer: 2-6

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Peer-peer architecture
Áno always-on server
Áarbitrary end systems directly

communicate
Ápeers request service from other

peers, provide service in return to
other peers
Åself scalabilityςnew peers bring new

service capacity, as well as new service
demands

Ápeers are intermittently connected
and change IP addresses
Åcomplex management

Áexample: P2P file sharing
Application Layer: 2-7

Processes communicating

process:program running
within a host

Áwithin same host, two
processes communicate
using inter-process
communication (defined by
OS)

Áprocesses in different hosts
communicate by exchanging
messages

Ánote: applications with
P2P architectures have
client processes &
server processes

client process:process that
initiates communication

server process:process
that waits to be contacted

clients, servers

Application Layer: 2-8

Sockets
Áprocess sends/receives messages to/from its socket

Ásocket analogous to door

Åsending process shoves message out door

Åsending process relies on transport infrastructure on other side of
door to deliver message to socket at receiving process

Åtwo sockets involved: one on each side

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer: 2-9

Addressing processes

Áto receive messages, process
must have identifier

Áhost device has unique 32-bit
IP address

ÁQ:does IP address of host on
which process runs suffice for
identifying the process?

Áidentifier includes both IP address
and port numbers associated with
process on host.

Áexample port numbers:
ÅHTTP server: 80

Åmail server: 25

Áto send HTTP message to
gaia.cs.umass.eduweb server:
ÅIP address: 128.119.245.12

Åport number: 80

ÁƳƻǊŜ ǎƘƻǊǘƭȅΧ

ÁA: no, manyprocesses
can be running on
same host

Application Layer: 2-10

An application-layer protocol defines:

Átypes of messages exchanged,

Åe.g., request, response

Ámessage syntax:

Åwhat fields in messages &
how fields are delineated

Ámessage semantics

Åmeaning of information in
fields

Árulesfor when and how
processes send & respond to
messages

open protocols:

Ádefined in RFCs, everyone
has access to protocol
definition

Áallows for interoperability

Áe.g., HTTP, SMTP

proprietary protocols:

Áe.g., Skype, Zoom

Application Layer: 2-11

What transport service does an app need?

data integrity
Ásome apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

Áother apps (e.g., audio) can
tolerate some loss

timing
Ásome apps (e.g., Internet

telephony, interactive games)
ǊŜǉǳƛǊŜ ƭƻǿ ŘŜƭŀȅ ǘƻ ōŜ άŜŦŦŜŎǘƛǾŜέ

throughput
Ásome apps (e.g., multimedia)

require minimum amount of
ǘƘǊƻǳƎƘǇǳǘ ǘƻ ōŜ άŜŦŦŜŎǘƛǾŜέ

ÁƻǘƘŜǊ ŀǇǇǎ όάŜƭŀǎǘƛŎ ŀǇǇǎέύ
make use of whatever
throughput they get

security
Áencryption, data integrity,
Χ

Application Layer: 2-12

Transport service requirements: common apps

application

file transfer/download

e-mail

Web documents

real-time audio/video

streaming audio/video

interactive games

text messaging

data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

throughput

elastic

elastic

elastic

audio: 5Kbps-1Mbps

video:10Kbps-5Mbps

same as above

Kbps+

elastic

time sensitive?

no

no

no

ȅŜǎΣ млΩs msec

yes, few secs

ȅŜǎΣ млΩs msec

yes and no

Application Layer: 2-13

Internet transport protocols services

TCP service:

Áreliable transport between sending
and receiving process

Áflow control:ǎŜƴŘŜǊ ǿƻƴΩt
overwhelm receiver

Ácongestion control:throttle sender
when network overloaded

Áconnection-oriented:setup required
between client and server processes

Ádoes not provide:timing, minimum
throughput guarantee, security

UDP service:

Áunreliable data transfer
between sending and receiving
process

Ádoes not provide:reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup.

Q:why bother? Why
is there a UDP?

Application Layer: 2-14

Internet applications, and transport protocols

application

file transfer/download

e-mail

Web documents

Internet telephony

streaming audio/video

interactive games

application
layer protocol

FTP [RFC 959]

SMTP [RFC 5321]

HTTP 1.1 [RFC 7320]

SIP [RFC 3261], RTP [RFC

3550], or proprietary

HTTP [RFC 7320], DASH

WOW, FPS (proprietary)

transport protocol

TCP

TCP

TCP

TCP or UDP

TCP

UDP or TCP

Application Layer: 2-15

Securing TCP

Vanilla TCP & UDP sockets:
Áno encryption
Ácleartext passwords sent into socket

traverse Internet in cleartext (!)

Transport Layer Security (TLS)
Áprovides encrypted TCP connections
Ádata integrity

Áend-point authentication

TSL implemented in
application layer

Áapps use TSL libraries, that
use TCP in turn

ÁŎƭŜŀǊǘŜȄǘ ǎŜƴǘ ƛƴǘƻ άǎƻŎƪŜǘέ
traverse Internet encrypted

Ámore: Chapter 8

Application Layer: 2-16

Application layer: overview

ÁPrinciples of network
applications

ÁWeb and HTTP

ÁE-mail, SMTP, IMAP

ÁThe Domain Name System
DNS

ÁP2P applications

Ávideo streaming and content
distribution networks

Ásocket programming with
UDP and TCP

Application Layer: 2-17

Web and HTTP

CƛǊǎǘΣ ŀ ǉǳƛŎƪ ǊŜǾƛŜǿΧ

Áweb page consists of objects, each ofwhich can be stored on
different Web servers

ÁƻōƧŜŎǘ Ŏŀƴ ōŜ I¢a[ŦƛƭŜΣ Wt9D ƛƳŀƎŜΣ WŀǾŀ ŀǇǇƭŜǘΣ ŀǳŘƛƻ ŦƛƭŜΣΧ

Áweb page consists of base HTML-file which includes several
referenced objects, each addressable by a URL, e.g.,

www.someschool.edu / someDept / pic.gif

host name path name

Application Layer: 2-18

HTTP overview

HTTP: hypertext transfer protocol
Á²ŜōΩs application-layer protocol
Áclient/server model:
Åclient: browser that requests,

receives, (using HTTP protocol) and
displays Web objects

Åserver:Web server sends (using
HTTP protocol) objects in response
to requests

iPhone running
Safari browser

PC running
Firefox browser

server running
Apache Web

server

Application Layer: 2-19

HTTP overview (continued)

HTTP uses TCP:
Áclient initiates TCP connection

(creates socket) to server, port 80

Áserver accepts TCP connection
from client

ÁHTTP messages (application-layer
protocol messages) exchanged
between browser (HTTP client) and
Web server (HTTP server)

ÁTCP connection closed

HTTP is stateless
Áserver maintainsno

information about past client
requests

protocols that maintain state
are complex!

Ápast history (state) must be
maintained

Á if server/client crashes, their views
of state may be inconsistent,
must be reconciled

aside

Application Layer: 2-20

HTTP connections: two types

Non-persistent HTTP

1. TCP connection opened

2. at most one object sent
over TCP connection

3. TCP connection closed

downloading multiple
objects required multiple
connections

Persistent HTTP

ÁTCP connection opened to
a server

Ámultiple objects can be
sent over singleTCP
connection between client,
and that server

ÁTCP connection closed

Application Layer: 2-21

Non-persistent HTTP: example
User enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at www.someSchool.eduon
port 80

2. HTTP client sends HTTP
request message(containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.eduwaiting for TCP
connection at port 80 accepts
connection, notifying client

3. HTTP server receives request message,
forms response messagecontaining
requested object, and sends message
into its socket

time

(containing text, references to 10 jpeg images)
www.someSchool.edu / someDepartment / home.index

Application Layer: 2-22

Non-persistent HTTP: example (cont.)
User enters URL:

(containing text, references to 10 jpeg images)
www.someSchool.edu / someDepartment / home.index

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for
each of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application Layer: 2-23

Non-persistent HTTP: response time

RTT (definition):time for a small
packet to travel from client to
server and back

HTTP response time (per object):
Áone RTT to initiate TCP connection
Áone RTT for HTTP request and first few

bytes of HTTP response to return
Áobect/file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request file

RTT

file received

time time

Non-persistent HTTP response time = 2RTT+ file transmission time

Application Layer: 2-24

Persistent HTTP (HTTP 1.1)

Non-persistent HTTP issues:

Árequires 2 RTTs per object

ÁOS overhead for eachTCP
connection

Ábrowsers often open multiple
parallel TCP connections to
fetch referenced objects in
parallel

Persistent HTTP (HTTP1.1):

Áserver leaves connection open after
sending response

Ásubsequent HTTP messages
between same client/server sent
over open connection

Áclient sends requests as soon as it
encounters a referenced object

Áas little as one RTT for all the
referenced objects (cutting
response time in half)

Application Layer: 2-25

HTTP request message

Átwo types of HTTP messages: request, response

ÁHTTP request message:
ÅASCII (human-readable format)

header
lines

GET / index.html HTTP/1.1 \ r \ n

Host: www - net.cs.umass.edu \ r \ n

User - Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X

10.15; rv:80.0) Gecko/20100101 Firefox/80.0 \ r \ n

Accept: text/ html,application / xhtml+xml \ r \ n

Accept - Language: en- us,en;q =0.5 \ r \ n

Accept - Encoding: gzip,deflate \ r \ n
Connection: keep - alive \ r \ n

\ r \ n

carriage return character
line-feed character

request line (GET, POST,
HEAD commands)

carriage return, line feed
at start of line indicates
end of header lines * Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Application Layer: 2-26

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Application Layer: 2-27

Other HTTP request messages

POST method:
Áweb page often includes form

input
Áuser input sent from client to

server in entity body of HTTP
POST request message

GET method (for sending data to server):

Áinclude user data in URL field of HTTP
D9¢ ǊŜǉǳŜǎǘ ƳŜǎǎŀƎŜ όŦƻƭƭƻǿƛƴƎ ŀ ΨΚΩύΥ

www.somesite.com / animalsearch?monkeys&banana

HEAD method:
Árequests headers (only) that

would be returnedif specified
URL were requested with an
HTTP GET method.

PUT method:
Áuploads new file (object) to server

Ácompletely replaces file that exists
at specified URL with content in
entity body of POST HTTP request
message

Application Layer: 2-28

HTTP response message

status line (protocol
status code status phrase)

header
lines

data, e.g., requested
HTML file

HTTP/1.1 200 OK

Date: Tue, 08 Sep 2020 00:53:20 GMT

Server: Apache/2.4.6 (CentOS)

OpenSSL/1.0.2k - fips PHP/7.4.9

mod_perl /2.0.11 Perl/v5.16.3

Last - Modified: Tue, 01 Mar 2016 18:57:50 GMT

ETag: "a5b - 52d015789ee9e"

Accept - Ranges: bytes

Content - Length: 2651

Content - Type: text/html; charset=UTF - 8

\ r \ n

data data data data data ...

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Application Layer: 2-29

HTTP response status codes

200 OK
Årequest succeeded, requested object later in this message

301 Moved Permanently
Årequested object moved, new location specified later in this message (in

Location: field)

400 Bad Request
Årequest msg not understood by server

404 Not Found
Årequested document not found on this server

505 HTTP Version Not Supported

Ástatus code appears in 1st line in server-to-client response message.
Ásome sample codes:

Application Layer: 2-30

Trying out HTTP (client side) for yourself

1. netcat to your favorite Web server:
Áopens TCP connection to port 80 (default HTTP server

port) at gaia.cs.umass. edu.

Áanything typed in will be sent to port 80 at
gaia.cs.umass.edu

% nc -c -v gaia.cs.umass.edu 80

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)

2. type in a GET HTTP request:

GET / kurose_ross /interactive/ index.php HTTP/1.1

Host: gaia.cs.umass.edu
Áby typing this in (hit carriage return twice), you send

this minimal (but complete) GET request to HTTP
server

Application Layer: 2-31

Maintaining user/server state: cookies

Recall: HTTP GET/response
interaction is stateless

Áno notion of multi-step exchanges of
HTTP messages to complete a Web
άǘǊŀƴǎŀŎǘƛƻƴέ
Åno need for client/server to track
άǎǘŀǘŜέ ƻŦ Ƴǳƭǘƛ-step exchange

Åall HTTP requests are independent of
each other

Åƴƻ ƴŜŜŘ ŦƻǊ ŎƭƛŜƴǘκǎŜǊǾŜǊ ǘƻ άǊŜŎƻǾŜǊέ
from a partially-completed-but-never-
completely-completed transaction

a stateful protocol: client makes
two changes to X, or none at all

time time

X

X

·Ω

·ΩΩ

·ΩΩ

ǘΩ

Q: what happens if network connection or
client crashes at ǘΩ ?

Application Layer: 2-32

Maintaining user/server state: cookies

Web sites and client browser use
cookiesto maintain some state
between transactions

four components:
1) cookie header line of HTTP response

message

2) cookie header line in next HTTP
requestmessage

3) cookie file kept on users host,
managed by users browser

4) back-end database at Web site

Example:
ÁSusan uses browser on laptop,

visits specific e-commerce site
for first time

Áwhen initial HTTP requests
arrives at site, site creates:

ÅǳƴƛǉǳŜ L5 όŀƪŀ άŎƻƻƪƛŜέύ

Åentry in backend database
for ID

Åsubsequent HTTP requests
from Susan to this site will
contain cookie ID value,
ŀƭƭƻǿƛƴƎ ǎƛǘŜ ǘƻ άƛŘŜƴǘƛŦȅέ
Susan

Application Layer: 2-33

Maintaining user/server state: cookies
client

server

usual HTTP response msg

usual HTTP response msg

cookie file

one week later:

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay8734 usual HTTP request msg Amazon server
creates ID

1678 for user create
entry

usual HTTP response
set-cookie: 1678 ebay8734

amazon 1678

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access
ebay8734
amazon 1678

backend
database

time time Application Layer: 2-34

HTTP cookies: comments

What cookies can be used for:
Áauthorization

Áshopping carts

Árecommendations

Áuser session state (Web e-mail)

cookies and privacy:
Ácookies permit sites to

learna lot about you on
their site.

Á third party persistent
cookies (tracking cookies)
allow common identity
(cookie value) to be
tracked across multiple
web sites

aside

Challenge: How to keep state?
Áat protocol endpoints: maintain state at

sender/receiver over multiple
transactions
Áin messages: cookies inHTTPmessages

carry state
Application Layer: 2-35

Web caches

Áuser configures browser to
point to a (local) Web cache

Ábrowser sends all HTTP
requests to cache

Åif object in cache: cache
returns object to client

Åelsecache requests object
from origin server, caches
received object, then
returns object to client

Goal:satisfy client requests without involving origin server

client

Web
cache

client

origin
server

Application Layer: 2-36

