
Document Number: MD00082
Revision 0.95

March 12, 2001

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

MIPS32™ Architecture For Programmers
Volume I: Introduction to the MIPS32™

Architecture

Copyright © 2001 MIPS Technologies, Inc. All rights reserved.

Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, modifyingor use of this information (in whole or in part) which is not expressly permitted in writing by MIPS
Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this information is protected
under unfair competition laws and the expression of the information contained herein is protected under federal
copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in
this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
the application or use of this information. Any license under patent rights or any other intellectual property rights owned
by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third
party in a separate license agreement between the parties.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or any contractually-authorized third party.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies, Inc., and
R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MDMX,
SmartMIPS, 4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV
and MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

.....
....
.....
......
Table of Contents

Chapter 1 About This Book ..1
1.1 Typographical Conventions ...1

1.1.1 Italic Text ...1
1.1.2 Bold Text ...1
1.1.3 Courier Text ...1

1.2 UNPREDICTABLE and UNDEFINED ..2
1.2.1 UNPREDICTABLE...2
1.2.2 UNDEFINED...2

1.3 Special Symbols in Pseudocode Notation..2
1.4 For More Information ..5

Chapter 2 The MIPS Architecture: An Introduction...7
2.1 MIPS32 and MIPS64 Overview ..7

2.1.1 Historical Perspective ..7
2.2 Architectural Changes Relative to the MIPS I through MIPS V Architectures...7

2.2.1 MIPS Instruction Set Architecture (ISA)..8
2.2.2 MIPS Privileged Resource Architecture (PRA) ..8
2.2.3 MIPS Application Specific Extensions (ASEs)...8
2.2.4 MIPS User Defined Instructions (UDIs)..8

2.3 Architecture Versus Implementation ...9
2.4 Relationship between the MIPS32 and MIPS64 Architectures ...9
2.5 Instructions, Sorted by ISA..9

2.5.1 List of MIPS32 Instructions...10
2.5.2 List of MIPS64 Instructions...10

2.6 Pipeline Architecture..11
2.6.1 Pipeline Stages and Execution Rates ...11
2.6.2 Parallel Pipeline ...12
2.6.3 Superpipeline ...12
2.6.4 Superscalar Pipeline...12

2.7 Load/Store Architecture...13
2.8 Programming Model ..13

2.8.1 CPU Data Formats ...14
2.8.2 FPU Data Formats..14
2.8.3 Coprocessors (CP0-CP3) ...14
2.8.4 CPU Registers..14
2.8.5 FPU Registers ..16
2.8.6 Byte Ordering and Endianness...17
2.8.7 Memory Access Types...20
2.8.8 Implementation-Specific Access Types...21
2.8.9 Cache Coherence Algorithms and Access Types ..21
2.8.10 Mixing Access Types...21

Chapter 3 Application Specific Extensions...23
3.1 Description of ASEs...23
3.2 List of Application Specific Instructions ...24

3.2.1 The MIPS16 Application Specific Extension to the MIPS32Architecture... 24
3.2.2 The MDMX Application Specific Extension to the MIPS64 Architecture ...24
3.2.3 The MIPS-3D Application Specific Extension to the MIPS64 Architecture ...24
3.2.4 The SmartMIPS Application Specific Extension to the MIPS32 Architecture ...24

Chapter 4 Overview of the CPU Instruction Set ...25
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 i

.....

.......
........
...
..
4.1 CPU Instructions, Grouped By Function ...25
4.1.1 CPU Load and Store Instructions ..25
4.1.2 Computational Instructions..27
4.1.3 Jump and Branch Instructions..30
4.1.4 Miscellaneous Instructions...32
4.1.5 Coprocessor Instructions..35

4.2 CPU Instruction Formats ...36

Chapter 5 Overview of the FPU Instruction Set ...39
5.1 Binary Compatibility..39
5.2 Enabling the Floating Point Coprocessor...39
5.3 IEEE Standard 754...40
5.4 FPU Data Types ...40

5.4.1 Floating Point Formats...40
5.5 Floating Point Register Types..44

5.5.1 FPRs and Formatted Operand Layout..44
5.6 Floating Point Control Registers (FCRs) ...44

5.6.1 Floating Point Implementation Register (FCCR, CP1 Control Register 0).. 44
5.6.2 Floating Point Control and Status Register (FCSR, CP1 Control Register 31).. 45
5.6.3 Floating Point Condition Codes Register (FCCR, CP1 Control Register 25) ...48
5.6.4 Floating Point Exceptions Register (FEXR, CP1 Control Register 26) ... 48
5.6.5 Floating Point Enables Register (FENR, CP1 Control Register 28) ... 49

5.7 Formats of Values Used in FP Registers ...49
5.8 FPU Exceptions..51

5.8.1 Exception Conditions...52
5.9 FPU Instructions ..55

5.9.1 Data Transfer Instructions..55
5.9.2 Arithmetic Instructions ..56
5.9.3 Conversion Instructions ...56
5.9.4 Formatted Operand-Value Move Instructions ...57
5.9.5 Conditional Branch Instructions ..58
5.9.6 Miscellaneous Instructions...59

5.10 Valid Operands for FPU Instructions...59
5.11 FPU Instruction Formats..60

5.11.1 Implementation Note ...61

Appendix A Instruction Bit Encodings ...63
A.1 Instruction Encodings and Instruction Classes ...63
A.2 Instruction Bit Encoding Tables..63

Appendix B Revision History ...69
ii MIPS32™ Architecture For Programmers Volume I, Revision 0.95

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 iii

List of Figures

Figure 2-1: Relationship between the MIPS32 and MIPS64 Architectures...9
Figure 2-2: One-Deep Single-Completion Instruction Pipeline...11
Figure 2-3: Four-Deep Single-Completion Pipeline ..12
Figure 2-4: Four-Deep Superpipeline ..12
Figure 2-5: Four-Way Superscalar Pipeline...13
Figure 2-6: CPU Registers ...16
Figure 2-7: FPU Registers..17
Figure 2-8: Big-Endian Byte Ordering...18
Figure 2-9: Little-Endian Byte Ordering..18
Figure 2-10: Big-Endian Data in Doubleword Format ..19
Figure 2-11: Little-Endian Data in Doubleword Format ...19
Figure 2-12: Big-Endian Misaligned Word Addressing ..20
Figure 2-13: Little-Endian Misaligned Word Addressing ...20
Figure 3-1: MIPS ISAs and ASEs..23
Figure 3-2: User-Mode MIPS ISAs and Optional ASEs..23
Figure 4-1: Immediate (I-Type) CPU Instruction Format..37
Figure 4-2: Jump (J-Type) CPU Instruction Format..37
Figure 4-3: Register (R-Type) CPU Instruction Format ..37
Figure 5-1: Single-Precisions Floating Point Format (S)...41
Figure 5-2: Double-Precisions Floating Point Format (D)...41
Figure 5-3: Word Fixed Point Format (W) ..43
Figure 5-4: FIR Register Format..44
Figure 5-5: FCSR Register Format ..46
Figure 5-6: FCCR Register Format..48
Figure 5-7: FEXR Register Format..48
Figure 5-8: FENR Register Format..49
Figure 5-9: Effect of FPU Operations on the Format of Values Held in FPRs..51
Figure 5-10: I-Type (Immediate) FPU Instruction Format ..61
Figure 5-11: R-Type (Register) FPU Instruction Format...61
Figure 5-12: Register-Immediate FPU Instruction Format ..61
Figure 5-13: Condition Code, Immediate FPU Instruction Format ...61
Figure 5-14: Formatted FPU Compare Instruction Format..61
Figure 5-15: FP RegisterMove, Conditional Instruction Format ...61
Figure 5-16: Condition Code, Register Integer FPU Instruction Format...62
Figure A-1: Sample Bit Encoding Table..64

List of Tables

Table 1-1: Symbols Used in Instruction Operation Statements ..3
Table 2-1: MIPS32 Instructions ..10
Table 2-2: MIPS64 Instructions ..10
Table 2-3: Unaligned Load and Store Instructions ...19
Table 4-1: Load and Store Operations Using Register + Offset Addressing Mode..26
Table 4-2: Aligned CPU Load/Store Instructions ..26
Table 4-3: Unaligned CPU Load and Store Instructions ..27
Table 4-4: Atomic Update CPU Load and Store Instructions...27
Table 4-5: Coprocessor Load and Store Instructions ..27
Table 4-6: ALU Instructions With an Immediate Operand ..28
Table 4-7: Three-Operand ALU Instructions ...28
Table 4-8: Three-Operand ALU Instructions ...29
Table 4-9: Shift Instructions ...29
Table 4-10: Multiply/Divide Instructions ..30
Table 4-11: Unconditional Jump Within a 256 Megabyte Region ...31
Table 4-12: PC-Relative Conditional Branch Instructions Comparing Two Registers ..32
Table 4-13: PC-Relative Conditional Branch Instructions Comparing With Zero ..32
Table 4-14: Deprecated Branch Likely Instructions ...32
Table 4-15: Serialization Instruction...33
Table 4-16: System Call and Breakpoint Instructions ..33
Table 4-17: Trap-on-Condition Instructions Comparing Two Registers ..33
Table 4-18: Trap-on-Condition Instructions Comparing an Immediate Value...34
Table 4-19: CPU Conditional Move Instructions ...34
Table 4-20: Prefetch Instructions ..34
Table 4-21: NOP Instructions ...35
Table 4-22: Coprocessor Definition and Use in the MIPS Architecture...35
Table 4-23: CPU Instruction Format Fields..37
Table 5-1: Parameters of Floating Point Data Types ..40
Table 5-2: Value of Single or Double Floating Point DataType Encoding ..41
Table 5-3: Value Supplied When a New Quiet NaN Is Created...43
Table 5-4: FIR Register Field Descriptions ..45
Table 5-5: FCSR Register Field Descriptions...46
Table 5-6: Cause, Enable, and Flag Bit Definitions..47
Table 5-7: Rounding Mode Definitions ..47
Table 5-8: FCCR Register Field Descriptions ..48
Table 5-9: FEXR Register Field Descriptions ..49
Table 5-10: FENR Register Field Descriptions ..49
Table 5-11: Default Result for IEEE Exceptions Not Trapped Precisely ..53
Table 5-12: FPU Data Transfer Instructions ...55
Table 5-13: FPU Loads and Stores Using Register+Offset Address Mode..55
Table 5-14: FPU Move To and From Instructions..56
Table 5-15: FPU IEEE Arithmetic Operations ...56
Table 5-16: FPU Conversion Operations Using the FCSR Rounding Mode..57
Table 5-17: FPU Conversion Operations Using a Directed Rounding Mode...57
Table 5-18: FPU Formatted Operand Move Instructions..57
Table 5-19: FPU Conditional Move on True/False Instructions...57
Table 5-20: FPU Conditional Move on Zero/Nonzero Instructions ...58
Table 5-21: FPU Conditional Branch Instructions..58
Table 5-22: Deprecated FPU Conditional Branch Likely Instructions ...58
Table 5-23: CPU Conditional Move on FPU True/False Instructions ..59
iv MIPS32™ Architecture For Programmers Volume I, Revision 0.95

...
Table 5-24: FPU Operand Format Field (fmt) Encoding ...59
Table 5-25: Valid Formats for FPU Operations ...60
Table 5-26: FPU Instruction Format Fields ...62
Table A-1: Symbols Used in the Instruction Encoding Tables...64
Table A-2: MIPS32 Encoding of the Opcode Field..65
Table A-3: MIPS32 SPECIAL Opcode Encoding of Function Field ...65
Table A-4: MIPS32 REGIMM Encoding of rt Field ..65
Table A-5: MIPS32 SPECIAL2 Encoding of Function Field...65
Table A-6: MIPS32 MOVCI Encoding of tf Bit...66
Table A-7: MIPS32 COPz Encoding of rs Field...66
Table A-8: MIPS32 COPz Encoding of rt Field When rs=BCz ...66
Table A-9: MIPS32 COP0 Encoding of rs Field...66
Table A-10: MIPS32 COP0 Encoding of Function Field When rs=CO...66
Table A-11: MIPS32 COP1 Encoding of rs Field...66
Table A-12: MIPS32 COP1 Encoding of Function Field When rs=S ..67
Table A-13: MIPS32 COP1 Encoding of Function Field When rs=D..67
Table A-14: MIPS32 COP1 Encoding of Function Field When rs=W...67
Table A-15: MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF .. 67
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 v

vi MIPS32™ Architecture For Programmers Volume I, Revision 0.95

32™

of the

t

by

ion
Chapter 1

About This Book

The MIPS32™ Architecture For Programmers Volume I comes as a multi-volume set.

• Volume I describes conventions used throughout the document set, and provides an introduction to the MIPS
Architecture

• Volume II provides detailed descriptions of each instruction in the MIPS32™ instruction set

• Volume III describes the MIPS32™ Privileged Resource Architecture which defines and governs the behavior
privileged resources included in a MIPS32™ processor implementation

• Volume IV-a describes the MIPS16™ Application-Specific Extension to the MIPS32™ Architecture

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32™ Architecture and is not
applicable to the MIPS32™ document set

• Volume IV-c describes the MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture and is no
applicable to the MIPS32™ document set

• Volume IV-d describes the SmartMIPS™Application-Specific Extension to the MIPS32™ Architecture

1.1 Typographical Conventions

This section describes the use ofitalic, bold andcourier fonts in this book.

1.1.1 Italic Text

• is used foremphasis

• is used forbits, fields, registers, that are important from a software perspective (for instance, address bits used
software, and programmable fields and registers), and variousfloating point instruction formats, such asS, D, andPS

• is used for the memory access types, such ascached anduncached

1.1.2 Bold Text

• represents a term that is beingdefined

• is used forbits andfields that are important from a hardware perspective (for instance,register bits, which are not
programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance,5..1 indicates numbers 5 through 1

• is used to emphasizeUNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruct
pseudocode.
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 1

Chapter 1 About This Book

ions
.

, or

ated,

ry

 is

process

here is
ocessor

tation
1.2 UNPREDICTABLE and UNDEFINED

The termsUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases.UNDEFINED behavior or operations can occur only as the result of executing instruct
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register)
Unprivileged software can never causeUNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can causeUNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generatingUNPREDICTABLE results must not depend on any data source (memo
or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
inaccessible in the current processor mode. For example,UNPREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction.UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue.UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which t
no exit other than powering down the processor). The assertion of any of the reset signals must restore the pr
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language no
resembling Pascal. Special symbols used in the pseudocode notation are listed inTable 1-1.
2 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

1.3 Special Symbols in Pseudocode Notation

ary
 is

ness
Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed byy copies of the single-bit valuex

b#n
A constant valuen in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the bin
value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix
omitted, the default base is 10.

xy..z
Selection of bitsy throughzof bit stringx. Little-endian bit notation (rightmost bit is 0) is used. Ify is less than
z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose registerx. The content ofGPR[0] is always zero.

FPR[x] Floating Point operand registerx

FCC[CC] Floating Point condition code CC.FCC[0] has the same value asCOC[1].

FPR[x] Floating Point (Coprocessor unit 1), general registerx

CPR[z,x,s] Coprocessor unitz, general registerx, select s

CCR[z,x] Coprocessor unitz, control registerx

COC[z] Coprocessor unitz condition signal

Xlat[x] Translation of the MIPS16 GPR numberx into the corresponding 32-bit GPR number

BigEndianMem
Endian mode as configured at chip reset (0→Little-Endian, 1→ Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endian
of Kernel and Supervisor mode execution.
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 3

Chapter 1 About This Book

, and

turn

e

me

led

h an
n

t
icular

n
g a

tion)

sical

-bit
PRs

nch or

 not

ment
e

BigEndianCPU
The endianness for load and store instructions (0→ Little-Endian, 1→ Big-Endian). In User mode, this
endianness may be switched by setting theREbit in theStatusregister. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

ReverseEndian
Signal to reverse the endianness of load and store instructions. This feature is available in User mode only
is implemented by setting theREbit of theStatusregister. Thus, ReverseEndian may be computed as (SRREand
User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write.LLbit is set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other CPU
operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception re
instructions.

I :,
I+n :,
I-n :

This occurs as a prefix toOperation description lines and functions as a label. It indicates the instruction tim
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a ti
label ofI . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labe
with the instruction time, relative to the current instructionI , in which the effect of that pseudocode appears to
occur. For example, an instruction may have a result that is not available until after the next instruction. Suc
instruction has the portion of the instruction operation description that writes the result register in a sectio
labeledI+1.

The effect of pseudocode statements for the current instruction labelledI+1 appears to occur “at the same time”
as the effect of pseudocode statements labeledI for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for differen
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a part
order of evaluation between such sections.

PC

TheProgram Countervalue. During the instruction time of an instruction, this is the address of the instructio
word. The address of the instruction that occurs during the next instruction time is determined by assignin
value toPC during an instruction time. If no value is assigned toPC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16 instruc
or 4 before the next instruction time. A taken branch assigns the target address to thePCduring the instruction
time of the instruction in the branch delay slot.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phy
address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bit F
in which 64-bit data types are stored in any FPR.

In MIPS32 implementations,FP32RegistersModeis always a 0. MIPS64 implementations have a compatibility
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterModeis computed from the FR bit in theStatusregister. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value ofFP32RegistersMode is computed from the FR bit in theStatus register.

InstructionInBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a bra
jump. This condition reflects thedynamic state of the instruction, not thestatic state. That is, the value is false
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is
executed in the delay slot of a branch or jump.

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argu
parameter as an exception-specific argument). Control does not return from this pseudocode function - th
exception is signaled at the point of the call.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
4 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

1.4 For More Information

URL:
1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS

http://www.mips.com

Comments or questions on the MIPS32™ Architecture or this document should be directed to

Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 5

Chapter 1 About This Book
6 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

IPS
kward
were
tions,
cause of
of the

 on a
leged
btle
ibility
 every

nd
, most of
ferent
unction

e MIPS
IPS

based

stems
User

l
ystem

PS V

ents
n must
Chapter 2

The MIPS Architecture: An Introduction

2.1 MIPS32 and MIPS64 Overview

2.1.1 Historical Perspective

The MIPS® Instruction Set Architecture (ISA) has evolved over time from the original MIPS I™ ISA, through the M
V™ ISA, to the current MIPS32™ and MIPS64™ Architectures. As the ISA evolved, all extensions have been bac
compatible with previous versions of the ISA. In the MIPS III™ level of the ISA, 64-bit integers and addresses
added to the instruction set. The MIPS IV™ and MIPS V™ levels of the ISA added improved floating point opera
as well as a set of instructions intended to improve the efficiency of generated code and of data movement. Be
the strict backward-compatible requirement of the ISA, such changes were unavailable to 32-bit implementations
ISA which were, by definition, MIPS I™ or MIPS II™ implementations.

While the user-mode ISA was always backward compatible, the privileged environment was allowed to change
per-implementation basis. As a result, the R3000® privileged environment was different from the R4000® privi
environment, and subsequent implementations, while similar to the R4000 privileged environment, included su
differences. Because the privileged environment was never part of the MIPS ISA, an implementation had the flex
to make changes to suit that particular implementation. Unfortunately, this required kernel software changes to
operating system or kernel environment on which that implementation was intended to run.

Many of the original MIPS implementations were targeted at computer-like applications such as workstations a
servers. In recent years MIPS implementations have had significant success in embedded applications. Today
the MIPS parts that are shipped go into some sort of embedded application. Such applications tend to have dif
trade-offs than computer-like applications including a focus on cost of implementation, and performance as a f
of cost and power.

The MIPS32 and MIPS64 Architectures are intended to address the need for a high-performance but cost-sensitiv
instruction set. The MIPS32 Architecture is based on the MIPS II ISA, adding selected instructions from MIPS III, M
IV, and MIPS V to improve the efficiency of generated code and of data movement. The MIPS64 Architecture is
on the MIPS V ISA and is backward compatible with the MIPS32 Architecture. Both the MIPS32 and MIPS64
Architectures bring the privileged environment into the Architecture definition to address the needs of operating sy
and other kernel software. Both also include provision for adding MIPS Application Specific Extensions (ASEs),
Defined Instructions (UDIs), and custom coprocessors to address the specific needs of particular markets.

MIPS32 and MIPS64 Architectures provides a substantial cost/performance advantage over microprocessor
implementations based on traditional architectures. This advantage is a result of improvements made in severa
contiguous disciplines: VLSI process technology, CPU organization, system-level architecture, and operating s
and compiler design.

2.2 Architectural Changes Relative to the MIPS I through MIPS V Architectures

In addition to the MIPS32 Architecture described in this document set, the following changes were made to the
architecture relative to the earlier MIPS RISC Architecture Specification, which describes the MIPS I through MI
Architectures.

• The MIPS IV ISA added a restriction to the load and store instructions which have natural alignment requirem
(all but load and store byte and load and store left and right) in which the base register used by the instructio
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 7

Chapter 2 The MIPS Architecture: An Introduction

fset be
ed

s

y or

ons
ation).

sub,
 RISC

ns
both
t code
all
ional
32 and

ich the
virtual
 PRA
ions, user

l
ructions
o meet

ctions
also be naturally aligned (the restriction expressed in the MIPS RISC Architecture Specification is that the of
aligned, but the implication is that the base register is also aligned, and this is more consistent with the index
load/store instructions which have no offset field). The restriction that the base register be naturally-aligned i
eliminated by the MIPS32 Architecture, leaving the restriction that the effective address be naturally-aligned.

• Early MIPS implementations required two instructions separating a mflo or mfhi from the next integer multipl
divide operation. This hazard was eliminated in the MIPS IV ISA, although the MIPS RISC Architecture
Specification does not clearly explain this fact. The MIPS32 Architecture explicitly eliminates this hazard and
requires that the hi and lo registers be fully interlocked in hardware for all integer multiply and divide instructi
(including, but not limited to, the madd, maddu, msub, msubu, and mul instructions introduced in this specific

• The Implementation and Programming Notes included in the instruction descriptions for the madd, maddu, m
msubu, and mul instructions should also be applied to all integer multiply and divide instructions in the MIPS
Architecture Specification.

2.2.1 MIPS Instruction Set Architecture (ISA)

The MIPS32 and MIPS64 Instruction Set Architectures define a compatible family of 32-bit and 64-bit instructio
within the framework of the overall MIPS32 and MIPS64 Architectures. Included in the ISA are all instructions,
privileged and unprivileged, by which the programmer interfaces with the processor. The ISA guarantees objec
compatibility for unprivileged and, often, privileged programs executing on any MIPS32 or MIPS64 processor;
instructions in the MIPS64 ISA are backward compatible with those instructions in the MIPS32 ISA. Using condit
compilation or assembly language macros, it is often possible to write privileged programs that run on both MIPS
MIPS64 implementations.

2.2.2 MIPS Privileged Resource Architecture (PRA)

The MIPS32 and MIPS64 Privileged Resource Architecture defines a set of environments and capabilities on wh
ISA operates. The effects of some components of the PRA are visible to unprivileged programs; for instance, the
memory layout. Many other components are visible only to privileged programs and the operating system. The
provides the mechanisms necessary to manage the resources of the processor: virtual memory, caches, except
contexts, etc.

2.2.3 MIPS Application Specific Extensions (ASEs)

The MIPS32 and MIPS64 Architectures provide support for optional application specific extensions. As optiona
extensions to the base architecture, the ASEs do not burden every implementation of the architecture with inst
or capability that are not needed in a particular market. An ASE can be used with the appropriate ISA and PRA t
the needs of a specific application or an entire class of applications.

2.2.4 MIPS User Defined Instructions (UDIs)

In addition to support for ASEs as described above, the MIPS32 and MIPS64 Architectures define specific instru
for the use of each implementation. TheSpecial2 instruction function fields and Coprocessor 2 are reserved for
capability defined by each implementation.
8 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.3 Architecture Versus Implementation

nt,

the
sion,

ll MIPS

ers free

IPS64
trict
2.3 Architecture Versus Implementation

When describing the characteristics of MIPS processors,architecture must be distinguished from the hardware
implementation of that architecture.

• Architecture refers to the instruction set, registers and other state, the exception model, memory manageme
virtual and physical address layout, and other features that all hardware executes.

• Implementation refers to the way in which specific processors apply the architecture.

Here are two examples:

1. A floating point unit (FPU) is an optional part of the MIPS32 Architecture. A compatible implementation of
FPU may have different pipeline lengths, different hardware algorithms for performing multiplication or divi
etc.

2. Most MIPS processors have caches; however, these caches are not implemented in the same manner in a
processors. Some processors implement physically-indexed, physically tagged caches. Other implement
virtually-indexed, physically-tagged caches. Still other processor implement more than one level of cache.

The MIPS32 architecture is decoupled from specific hardware implementations, leaving microprocessor design
to create their own hardware designs within the framework of the architectural definition.

2.4 Relationship between the MIPS32 and MIPS64 Architectures

 The MIPS Architecture evolved as a compromise between software and hardware resources. The architecture
guarantees object-code compatibility for User-Mode programs executed on any MIPS processor. In User Mode M
processors are backward-compatible with their MIPS32 predecessors. As such, the MIPS32 Architecture is a s
subset of the MIPS64 Architecture. The relationship between the architectures is shown inFigure 2-1.

Figure 2-1 Relationship between the MIPS32 and MIPS64 Architectures

2.5 Instructions, Sorted by ISA

This section lists the instructions that are a part of the MIPS32 and MIPS64 ISAs.

MIPS32
Architecture

MIPS64
Architecture

High-performance 32-bit
Instruction Set Architecture and
Privileged Resource
Architecture

High-performance 64-bit
Instruction Set Architecture and
Privileged Resource
Architecture, fully backward
compatible with the 32-bit
architecture
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 9

Chapter 2 The MIPS Architecture: An Introduction
2.5.1 List of MIPS32 Instructions

Table 2-1 lists of those instructions included in the MIPS32 ISA.

2.5.2 List of MIPS64 Instructions

Table 2-2 lists of those instructions introduced in the MIPS64 ISA.

Table 2-1 MIPS32 Instructions

ABS.D ABS.S ADD ADD.D ADD.S ADDI ADDIU ADDU

AND ANDI BC1F BC1FL BC1T BC1TL BC2F BC2FL

BC2T BC2TL BEQ BEQL BGEZ BGEZAL BGEZALL BGEZL

BGTZ BGTZL BLEZ BLEZL BLTZ BLTZAL BLTZALL BLTZL

BNE BNEL BREAK C.cond.D C.cond.S CACHE CEIL.W.D CEIL.W.S

CFC1 CFC2 CLO CLZ COP2 CTC1 CTC2 CVT.D.S

CVT.D.W CVT.S.D CVT.S.W CVT.W.D CVT.W.S DIV DIV.D DIV.S

DIVU ERET FLOOR.W.D FLOOR.W.S J JAL JALR JR

LB LBU LDC1 LDC2 LH LHU LL LUI

LW LWC1 LWC2 LWL LWR MADD MADDU MFC0

MFC1 MFC2 MFHI MFLO MOV.D MOV.S MOVF MOVF.D

MOVF.S MOVN MOVN.D MOVN.S MOVT MOVT.D MOVT.S MOVZ

MOVZ.D MOVZ.S MSUB MSUBU MTC0 MTC1 MTC2 MTHI

MTLO MUL MUL.D MUL.S MULT MULTU NEG.D NEG.S

NOR OR ORI PREF ROUND.W.D ROUND.W.S SB SC

SDC1 SDC2 SH SLL SLLV SLT SLTI SLTIU

SLTU SQRT.D SQRT.S SRA SRAV SRL SRLV SSNOP

SUB SUB.D SUB.S SUBU SW SWC1 SWC2 SWL

SWR SYNC SYSCALL TEQ TEQI TGE TGEI TGEIU

TGEU TLBP TLBR TLBWI TLBWR TLT TLTI TLTIU

TLTU TNE TNEI TRUNC.W.D TRUNC.W.S WAIT XOR XORI

Table 2-2 MIPS64 Instructions

ABS.PS ADD.PS ALNV.PS C.cond.PS CEIL.L.D CEIL.L.S CVT.D.L CVT.L.D

CVT.L.S CVT.PS.S CVT.S.L CVT.S.PL CVT.S.PU DADD DADDI DADDIU

DADDU DCLO DDIV DDIVU DLCZ DMFC0 DMFC1 DMFC2

DMTC0 DMTC1 DMTC2 DMULT DMULTU DSLL DSLL32 DSLLV

DSRA DSRA32 DSRAV DSRL DSRL32 DSRLV DSUB DSUBU
10 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.6 Pipeline Architecture

nd
ndent.)

crete

lock

pletion,
2.6 Pipeline Architecture

This section describes the basic pipeline architecture, along with two types of improvements: superpipelines a
superscalar pipelines. (Pipelining and multiple issuing are not defined by the ISA, but are implementation depe

2.6.1 Pipeline Stages and Execution Rates

MIPS processors all use some variation of a pipeline in their architecture. A pipeline is divided into the following dis
parts, orstages, shown inFigure 2-2:

• Fetch

• Arithmetic operation

• Memory access

• Write back

Figure 2-2 One-Deep Single-Completion Instruction Pipeline

In the example shown inFigure 2-2, each stage takes one processor clock cycle to complete. Thus it takes four c
cycles (ignoring delays or stalls) for the instruction to complete. In this example, theexecution rate of the pipeline is
one instruction every four clock cycles. Conversely, because only a single execution can be fetched before com
only one stage is active at any time.

FLOOR.L.D FLOOR.L.S LD LDL LDR LDXC1 LLD LUXC1

LWU LWXC1 MADD.D MADD.PS MADD.S MOV.PS MOVF.PS MOVN.PS

MOVT.PS MOVZ.PS MSUB.D MSUB.PS MSUB.S MUL.PS NEG.PS NMADD.D

NMADD.PS NMADD.S NMSUB.D NMSUB.PS NMSUB.S PLL.PS PLU.PS PREFX

PUL.PS PUU.PS RECIP.D RECIP.S ROUND.L.D ROUND.L.S RSQRT.D RSQRT.S

SCD SD SDL SDR SDXC1 SUB.PS SUXC1 SWXC1

TRUNC.L.D TRUNC.L.S

Table 2-2 MIPS64 Instructions

Instruction 1

Fetch ALU Memory Write

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Stage 1 Stage 2 Stage 3 Stage 4

Execution Rate

Cycle 5 Cycle 6 Cycle 7 Cycle 8

Cycle 3

Instruction 2

Stage 1 Stage 2 Stage 3 Stage 4

Fetch ALU Memory Write
Instruction completion
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 11

Chapter 2 The MIPS Architecture: An Introduction

wn

a new
cuted
leted;

k

2.6.2 Parallel Pipeline

Figure 2-3illustrates a remedy for thelatency(the time it takes to execute an instruction) inherent in the pipeline sho
in Figure 2-2.

Instead of waiting for an instruction to be completed before the next instruction can be fetched (four clock cycles),
instruction is fetched each clock cycle. There are four stages to the pipeline so the four instructions can be exe
simultaneously, one at each stage of the pipeline. It still takes four clock cycles for the first instruction to be comp
however, in this theoretical example, a new instruction is completed every clock cycle thereafter. Instructions inFigure
2-3 are executed at a rate four times that of the pipeline shown inFigure 2-2.

Figure 2-3 Four-Deep Single-Completion Pipeline

2.6.3 Superpipeline

Figure 2-4 shows asuperpipelined architecture. Each stage is designed to take only a fraction of an external cloc
cycle—in this case, half a clock. Effectively, each stage is divided into more than onesubstage. Therefore more than
one instruction can be completed each cycle.

Figure 2-4 Four-Deep Superpipeline

2.6.4 Superscalar Pipeline

A superscalararchitecture also allows more than one instruction to be completed each clock cycle.Figure 2-5shows a
four-way, five-stage superscalar pipeline.

Cycle 1

Instruction 1

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Instruction 2

Instruction 3

Instruction 4

Fetch ALU Memory Write

Fetch ALU Memory Write

Fetch ALU Memory Write

Fetch ALU Memory Write

Clock

Phase

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Fetch ALU Mem Write

Fetch ALU Mem Write

Fetch ALU Mem Write

Fetch ALU Mem Write

Fetch ALU Mem Write

Fetch ALU Mem Write

Fetch ALU Mem Write

Fetch ALU Mem Write
12 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.7 Load/Store Architecture

is is

egisters.
Figure 2-5 Four-Way Superscalar Pipeline

2.7 Load/Store Architecture

Generally, it takes longer to perform operations in memory than it does to perform them in on-chip registers. Th
because of the difference in time it takes to access a register (fast) and main memory (slower).

To eliminate the longer access time, orlatency, of in-memory operations, MIPS processors use aload/storedesign. The
processor has many registers on chip, and all operations are performed on operands held in these processor r
Main memory is accessed only through load and store instructions. This has several benefits:

• Reducing the number of memory accesses, easing memory bandwidth requirements

• Simplifying the instruction set

• Making it easier for compilers to optimize register allocation

2.8 Programming Model

This section describes the following aspects of the programming model:

• “CPU Data Formats”

• “Coprocessors (CP0-CP3)”

• “CPU Registers”

• “FPU Data Formats”

• “Byte Ordering and Endianness”

• “Memory Access Types”

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Five-stage

Four-way

IF = instruction fetch
ID = instruction decode and dependency
IS = instruction issue
EX = execution
WB = write back

IF ID IS EX WB

IF ID IS EX WB

IF ID IS EX WB

IF ID IS EX WB

IF ID IS EX WB

IF ID IS EX WB

IF ID IS EX WB

IF ID IS EX WB
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 13

Chapter 2 The MIPS Architecture: An Introduction

 kernel,
d error

ations

4

2.8.1 CPU Data Formats

The CPU defines the following data formats:

• Bit (b)

• Byte (8 bits,B)

• Halfword (16 bits,H)

• Word (32 bits,W)

• Doubleword (64 bits,D)1

2.8.2 FPU Data Formats

The FPU defines the following data formats:

• 32-bit single-precision floating point (.fmt typeS)

• 32-bit single-precision floating point paired-single (.fmt typePS)1

• 64-bit double-precision floating point (.fmt typeD)

• 32-bit Word fixed point (.fmt typeW)

• 64-bit Long fixed point (.fmt typeL)1

2.8.3 Coprocessors (CP0-CP3)

The MIPS Architecture defines four coprocessors (designated CP0, CP1, CP2, and CP3):

• Coprocessor 0 (CP0) is incorporated on the CPU chip and supports the virtual memory system and exception
handling. CP0 is also referred to as theSystem Control Coprocessor.

• Coprocessor 1 (CP1) is reserved for the floating point coprocessor, the FPU.

• Coprocessor 2 (CP2) is available for specific implementations.

• Coprocessor 3 (CP3) is reserved for the floating point unit in the MIPS64 Architecture.

CP0 translates virtual addresses into physical addresses, manages exceptions, and handles switches between
supervisor, and user states. CP0 also controls the cache subsystem, as well as providing diagnostic control an
recovery facilities. The architectural features of CP0 are defined in Volume III.

2.8.4 CPU Registers

The MIPS32 Architecture defines the following CPU registers:

• 32 32-bit general purpose registers (GPRs)

• a pair of special-purpose registers to hold the results of integer multiply, divide, and multiply-accumulate oper
(HI and LO)

• a special-purpose program counter (PC), which is affected only indirectly by certain instructions - it is not an
architecturally-visible register.

1 The CPU Doubleword and FPU floating point paired-single and and Long fixed point data formats are available only in the MIPS6
Architecture
14 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.8 Programming Model

o be

y

2.8.4.1 CPU General-Purpose Registers

Two of the CPU general-purpose registers have assigned functions:

• r0 is hard-wired to a value of zero, and can be used as the target register for any instruction whose result is t
discarded.r0 can also be used as a source when a zero value is needed.

• r31 is the destination register used by JAL, BLTZAL, BLTZALL, BGEZAL, and BGEZALL without being explicitl
specified in the instruction word. Otherwiser31 is used as a normal register.

The remaining registers are available for general-purpose use.

2.8.4.2 CPU Special-Purpose Registers

The CPU contains three special-purpose registers:

• PC—Program Counter register

• HI—Multiply and Divide register higher result

• LO—Multiply and Divide register lower result

– During a multiply operation, theHI andLO registers store the product of integer multiply.

– During a multiply-add or multiply-subtract operation, theHI andLO registers store the result of the integer
multiply-add or multiply-subtract.

– During a division, theHI andLO registers store the quotient (inLO) and remainder (inHI) of integer divide.

– During a multiply-accumulate, theHI andLO registers store the accumulated result of the operation.

Figure 2-6 shows the layout of the CPU registers.
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 15

Chapter 2 The MIPS Architecture: An Introduction

t

2.8.5 FPU Registers

The MIPS32 Architecture defines the following FPU registers:

• 32 32-bit floating point registers (FPRs). All 32 registers are available for use in single-precision floating poin
operations. Double-precision floating point values are stored in even-odd pairs of FPRs.

• Five FPU control registers are used to identify and control the FPU.

Figure 2-6 CPU Registers

31 0 31 0

r0 (hardwired to zero) HI

r1 LO

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30 31 0

r31 PC

General Purpose Registers Special Purpose Registers
16 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.8 Programming Model

.

n or
The MIPS32 ISA includes 8 floating point condition codes as part of the FCSR register in the floating point unit

Figure 2-7 shows the layout of the FPU Registers.

2.8.6 Byte Ordering and Endianness

Bytes within larger CPU data formats—halfword, word, and doubleword—can be configured in either big-endia
little-endian order, as described in the following subsections:

Figure 2-7 FPU Registers

31 0

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

f16

f17

f18

f19

f20

f21

f22

f23

f24

f25

f26 31 0

f27 FCR0

f28 FCR25

f29 FCR26

f30 FCR28

f31 FCSR

General Purpose Registers Special Purpose Registers
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 17

Chapter 2 The MIPS Architecture: An Introduction

with 0

this

t

• “Big-Endian Order”

• “Little-Endian Order”

• “MIPS Bit Endianness”

Endianness defines the location of byte 0 within a larger data structure (in this book, bits are always numbered
on the right). Figures 2-8 and 2-9 show the ordering of bytes within words and the ordering of words within
multiple-word structures for both big-endian and little-endian configurations.

2.8.6.1 Big-Endian Order

When configured inbig-endian order, byte 0 is the most-significant (left-hand) byte. Figure 2-8 shows this
configuration.

Figure 2-8 Big-Endian Byte Ordering

2.8.6.2 Little-Endian Order

When configured inlittle-endian order, byte 0 is always the least-significant (right-hand) byte. Figure 2-9 shows
configuration.

Figure 2-9 Little-Endian Byte Ordering

2.8.6.3 MIPS Bit Endianness

In this book, bit 0 is always the least-significant (right-hand) bit. Although no instructions explicitly designate bi
positions within words, MIPS bit designations are always little-endian.

Figure 2-10 shows big-endian and Figure 2-11 shows little-endian byte ordering in doublewords.

Bit #Higher
Address

Word
Address

Lower
Address

12

8

4

0

12 13 14 15

111098

7654

3210 1 word = 4 bytes

31 24 23 16 15 8 7 0

Bit #Higher
Address

Word
Address

Lower
Address

12

8

4

0

15 14 13 12

891011

4567

0123

31 24 23 16 15 8 7 0
18 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.8 Programming Model

traints:

:

-endian
Figure 2-10 Big-Endian Data in Doubleword Format

Figure 2-11 Little-Endian Data in Doubleword Format

2.8.6.4 Addressing Alignment Constraints

The CPU uses byte addressing for halfword, word, and doubleword accesses with the following alignment cons

• Halfword accesses must be aligned on an even byte boundary (0, 2, 4...).

• Word accesses must be aligned on a byte boundary divisible by four (0, 4, 8...).

• Doubleword accesses must be aligned on a byte boundary divisible by eight (0, 8, 16...).

2.8.6.5 Unaligned Loads and Stores

The following instructions load and store words that are not aligned on word (W) or doubleword (D) boundaries

Figure 2-12 show a big-endian access of a misaligned word that has byte address 3, and Figure 2-13 shows a little
access of a misaligned word that has byte address 1.1

Table 2-3 Unaligned Load and Store Instructions

Alignment Instructions Instruction Set

Word LWL, LWR, SWL, SWR MIPS32 ISA

Doubleword LDL, LDR, SDL, SDR MIPS64 ISA

Bit #

Halfword

Word

Byte #
63 40

4
1556 55 48 47 3239

765
16

32
7831 24 23

67

0

Byte

Most-significant byte Least-significant byte

Bits in a byte

Bit #

1
0

5 4 3 2 1 0

Bit #

Halfword

Word

Byte #
63 40

3
1556 55 48 47 3239

012
16

45
7831 24 23

67

7

Byte

Most-significant byte Least-significant byte

Bits in a byte

Bit #

6
0

5 4 3 2 1 0
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 19

Chapter 2 The MIPS Architecture: An Introduction

hes

s or the
r (MP)

emory.
Figure 2-12 Big-Endian Misaligned Word Addressing

Figure 2-13 Little-Endian Misaligned Word Addressing

2.8.7 Memory Access Types

MIPS systems provide severalmemory access types. These are characteristic ways to use physical memory and cac
to perform a memory access.

Thememory access typeis identified by the cache coherence algorithm (CCA) bits in the TLB entry for each mapped
virtual page. The access type used for a location is associated with the virtual address, not the physical addres
instruction making the reference. Memory access types are available for both uniprocessor and multiprocesso
implementations.

All implementations must provide the following memory access types:

• Uncached

• Cached

These memory access types are described in the following sections:

• “Uncached Memory Access”

• “Cached Memory Access”

2.8.7.1 Uncached Memory Access

In anuncachedaccess, physical memory resolves the access. Each reference causes a read or write to physical m
Caches are neither examined nor modified.

1 These two figures show left-side misalignment.

Bit #
Higher

Address

Lower
Address

823 16 15 731 024
4 5 6

3

Higher
Address

Lower
Address

Bit #

823 16 15 731 024
4

123
20 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.8 Programming Model

sed to

cation
and/or

ct on all

gorithm

nt,

es. The

pe.

gs with

ions

r store to
e

cation.
itional
2.8.7.2 Cached Memory Access

In acachedaccess, physical memory and all caches in the system containing a copy of the physical location are u
resolve the access. A copy of a location is coherent if the copy was placed in the cache by acached coherentaccess; a
copy of a location is noncoherent if the copy was placed in the cache by acached noncoherentaccess. (Coherency is
dictated by the system architecture, not the processor implementation.)

Caches containing a coherent copy of the location are examined and/or modified to keep the contents of the lo
coherent. It is not possible to predict whether caches holding a noncoherent copy of the location will be examined
modified during acached coherent access.

2.8.8 Implementation-Specific Access Types

An implementation may provide memory access types other thanuncached or cached. Implementation-specific
documentation accompanies each processor, and defines the properties of the new access types and their effe
memory-related operations.

2.8.9 Cache Coherence Algorithms and Access Types

Memory access types are specified by architecturally-defined and implementation-specific cache coherence al
bits (CCAs) kept in TLB entries.

Slightly different cache coherence algorithms such as “cached coherent, update on write” and “cached cohere
exclusive on write” can map to the same memory access type; in this case they both map tocached coherent. In order to
map to the same access type, the fundamental mechanisms of bothCCAs must be the same.

When the operation of the instruction is affected, the instructions are described in terms of memory access typ
load and store operations in a processor proceed according to the specificCCA of the reference, however, and the
pseudocode for load and store common functions uses theCCAvalue rather than the corresponding memory access ty

2.8.10 Mixing Access Types

It is possible to have more than one virtual location mapped to the same physical location (known asaliasing). The
memory access type used for the virtual mappings may be different, but it is not generally possible to use mappin
different access types at the same time.

For all accesses to virtual locations with thesamememory access type, a processor executing load and store instruct
on a physical location must ensure that the instructions occur in proper program order.

A processor can execute a load or store to a physical location using one access type, but any subsequent load o
the same location using a different memory access type isUNPREDICTABLE , unless a privileged instruction sequenc
to change the access type is executed between the two accesses. Each implementation has a privileged
implementation-specific mechanism to change access types.

The memory access type of a location affects the behavior of I-fetch, load, store, and prefetch operations to that lo
In addition, memory access types affect some instruction descriptions. Load Linked (LL, LLD) and Store Cond
(SC, SCD) have defined operation only for locations withcached memory access type.
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 21

Chapter 2 The MIPS Architecture: An Introduction
22 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

cture.

rent
ided for
und to

rimarily
n entire

e base
finition.
Chapter 3

Application Specific Extensions

This section gives an overview of the Architecture Specific Extensions that are supported by the MIPS32 Archite

3.1 Description of ASEs

As the MIPS architecture is adopted into a wider variety of markets, the need to extend this architecture in diffe
directions becomes more and more apparent. Therefore various optional application-specific extensions are prov
use with the base ISAs (MIPS32 and MIPS64). The ASEs are optional, so the architecture is not permanently bo
support them and the ASEs are used only as needed.

Extensions to the ISA are driven by the requirements of the computer segment, or by customers whose focus is p
on performance. An ASE can be used with the appropriate ISA to meet the needs of a specific application or a
class of applications.

Figure 3-1 shows how ASEs interrelate with ISAs.

Figure 3-1 MIPS ISAs and ASEs

Figure 3-2 User-Mode MIPS ISAs and Optional ASEs

The MIPS32 Architecture is a strict subset of the MIPS64 Architecture. ASEs are applicable to one or both of th
architectures as dictated by market need and the requirements placed on the base architecture by the ASE de

MIPS-3D
ASE

MIPS16
 ASE

MDMX
ASE

Next
Generation

ASE

Next
Generation

ASE

MIPS32
Architecture

MIPS64
Architecture

SmartMIPS
ASE

Code Compaction

Smart Cards

Enhanced Geometry Processing

Media Processing
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 23

Chapter 3 Application Specific Extensions

rket and
same

t

rs of
se the

single
use the

prove
me IV-d
3.2 List of Application Specific Instructions

As of the publishing date of this document, the following Application Specific Extensions were supported by the
architecture.

3.2.1 The MIPS16 Application Specific Extension to the MIPS32Architecture

The MIPS16 ASE is composed of 16-bit compressed code instructions, designed for the embedded processor ma
situations with tight memory constraints. The core can execute both 16- and 32-bit instructions intermixed in the
program, and is compatible with both the MIPS32 and MIPS64 Architectures. Volume IV-a of this document se
describes the MIPS16 ASE.

3.2.2 The MDMX Application Specific Extension to the MIPS64 Architecture

The MIPS Digital Media Extension (MDMX) provides video, audio, and graphics pixel processing through vecto
small integers. Although not a part of the MIPS ISA, this extension is included for informational purposes. Becau
MDMX ASE requires the MIPS64 Architecture, it is not discussed in this document set.

3.2.3 The MIPS-3D Application Specific Extension to the MIPS64 Architecture

The MIPS-3D ASE provides enhanced performance of geometry processing calculations by building on the paired
floating point data type, and adding specific instructions to accelerate computations on these data types. Beca
MIPS-3D ASE requires the MIPS64 Architecture, it is not discussed in this document set.

3.2.4 The SmartMIPS Application Specific Extension to the MIPS32 Architecture

The SmartMIPS ASE extends the MIPS32 Architecture with a set of new and modified instruction designed to im
the performance and reduce the memory consumption of MIPS-based smart card or smart object systems. Volu
of this document set describes the SmartMIPS ASE.

ASE Base Architecture
Requirement

Use

MIPS16™ MIPS32 or MIPS64 Code Compaction

MDMX™ MIPS64 Digital Media

MIPS-3D™ MIPS64 Geometry Processing

SmartMIPS™ MIPS32 Smart Cards and Smart Objects
24 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

rview

sters and

ress

ering.
Chapter 4

Overview of the CPU Instruction Set

This chapter gives an overview of the CPU instructions, including a description of CPU instruction formats. An ove
of the FPU instructions is given in Chapter 5.

4.1 CPU Instructions, Grouped By Function

CPU instructions are organized into the following functional groups:

• Load and store

• Computational

• Jump and branch

• Miscellaneous

• Coprocessor

Each instruction is 32 bits long.

4.1.1 CPU Load and Store Instructions

MIPS processors use a load/store architecture; all operations are performed on operands held in processor regi
main memory is accessed only through load and store instructions.

4.1.1.1 Types of Loads and Stores

There are several different types of load and store instructions, each designed for a different purpose:

• Transferring variously-sized fields (for example, LB, SW)

• Trading transferred data as signed or unsigned integers (for example, LHU)

• Accessing unaligned fields (for example, LWR, SWL)

• Atomic memory update (read-modify-write: for instance, LL/SC)

Regardless of the byte ordering (big- or little-endian), the address of a halfword, or word is the lowest byte add
among the bytes forming the object:

• For big-endian ordering, this is the most-significant byte.

• For a little-endian ordering, this is the least-significant byte.

Refer to “Byte Ordering and Endianness” on page 17 for more information on big-endian and little-endian data ord
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 25

Chapter 4 Overview of the CPU Instruction Set

icate the

he data

. Each

l
gister)
4.1.1.2 Load and Store Access Types

Table 4-1lists the data sizes that can be accessed through CPU load and store operations. These tables also ind
particular ISA within which each operation is defined.

4.1.1.3 List of CPU Load and Store Instructions

The following data sizes (as defined in theAccessLength field) are transferred by CPU load and store instructions:

• Byte

• Halfword

• Word

Signed and unsigned integers of different sizes are supported by loads that either sign-extend or zero-extend t
loaded into the register.

Table 4-2 lists aligned CPU load and store instructions, while unaligned loads and stores are listed in Table 4-3
table also lists the MIPS ISA within which an instruction is defined.

Unaligned words and doublewords can be loaded or stored in just two instructions by using a pair of the specia
instructions listed in Table 4-3. The load instructions read the left-side or right-side bytes (left or right side of re
from an aligned word and merge them into the correct bytes of the destination register.

Table 4-1 Load and Store Operations Using Register + Offset Addressing Mode

Data Size

CPU Coprocessors 1 and 2

Load
Signed

Load
Unsigned

Store Load Store

Byte MIPS32 MIPS32 MIPS32

Halfword MIPS32 MIPS32 MIPS32

Word MIPS32 MIPS64 MIPS32 MIPS32 MIPS32

Unaligned word MIPS32 MIPS32

Linked word (atomic modify) MIPS32 MIPS32

Table 4-2 Aligned CPU Load/Store Instructions

Mnemonic Instruction Defined in MIPS ISA

LB Load Byte MIPS32

LBU Load Byte Unsigned MIPS32

LH Load Halfword MIPS32

LHU Load Halfword Unsigned MIPS32

LW Load Word MIPS32

SB Store Byte MIPS32

SH Store Halfword MIPS32

SW Store Word MIPS32
26 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

4.1 CPU Instructions, Grouped By Function

ction

te of
ide one

event
d.

d load or
e System
Unaligned CPU load and store instructions are listed in Table 4-3, along with the MIPS ISA within which an instru
is defined.

4.1.1.4 Loads and Stores Used for Atomic Updates

The paired instructions, Load Linked and Store Conditional, can be used to perform an atomic read-modify-wri
word or doubleword cached memory locations. These instructions are used in carefully coded sequences to prov
of several synchronization primitives, including test-and-set, bit-level locks, semaphores, and sequencers and
counts. Table 4-4 lists the LL and SC instructions, along with the MIPS ISA within which an instruction is define

4.1.1.5 Coprocessor Loads and Stores

If a particular coprocessor is not enabled, loads and stores to that processor cannot execute and the attempte
store causes a Coprocessor Unusable exception. Enabling a coprocessor is a privileged operation provided by th
Control Coprocessor, CP0.

Table 4-5 lists the coprocessor load and store instructions.

4.1.2 Computational Instructions

This section describes the following:

• “ALU Immediate and Three-Operand Instructions”

• “ALU Two-Operand Instructions”

• “Shift Instructions”

• “Multiply and Divide Instructions”

Table 4-3 Unaligned CPU Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA

LWL Load Word Left MIPS32

LWR Load Word Right MIPS32

SWL Store Word Left MIPS32

SWR Store Word Right MIPS32

Table 4-4 Atomic Update CPU Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA

LL Load Linked Word MIPS32

SC Store Conditional Word MIPS32

Table 4-5 Coprocessor Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA

LDCz Load Doubleword to Coprocessor-z, z = 1 or 2 MIPS32

LWCz Load Word to Coprocessor-z, z = 1 or 2 MIPS32

SDCz Store Doubleword from Coprocessor-z, z = 1 or 2 MIPS32

SWCz Store Word from Coprocessor-z, z = 1 or 2 MIPS32
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 27

Chapter 4 Overview of the CPU Instruction Set

ersions

r from a
ion

logical

tion is
2’s complement arithmetic is performed on integers represented in 2’s complement notation. These are signed v
of the following operations:

• Add

• Subtract

• Multiply

• Divide

The add and subtract operations labelled “unsigned” are actually modulo arithmetic without overflow detection.

There are also unsigned versions ofmultiply anddivide, as well as a full complement ofshift andlogical operations.
Logical operations are not sensitive to the width of the register.

MIPS32 provided 32-bit integers and 32-bit arithmetic.

4.1.2.1 ALU Immediate and Three-Operand Instructions

Table 4-6 lists those arithmetic and logical instructions that operate on one operand from a register and the othe
16-bit immediatevalue supplied by the instruction word. This table also lists the MIPS ISA within which an instruct
is defined.

The immediateoperand is treated as a signed value for the arithmetic and compare instructions, and treated as a
value (zero-extended to register length) for the logical instructions.

Table 4-7 describes ALU instructions that use three operands, along with the MIPS ISA within which an instruc
defined.

Table 4-6 ALU Instructions With an Immediate Operand

Mnemonic Instruction Defined in MIPS ISA

ADDI Add Immediate Word MIPS32

ADDIUa

a. The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not trap on overflow.

Add Immediate Unsigned Word MIPS32

ANDI And Immediate MIPS32

LUI Load Upper Immediate MIPS32

ORI Or Immediate MIPS32

SLTI Set on Less Than Immediate MIPS32

SLTIU Set on Less Than Immediate Unsigned MIPS32

XORI Exclusive Or Immediate MIPS32

Table 4-7 Three-Operand ALU Instructions

Mnemonic Instruction Defined in MIPS ISA

ADD Add Word MIPS32

ADDUa Add Unsigned Word MIPS32

AND And MIPS32

NOR Nor MIPS32
28 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

4.1 CPU Instructions, Grouped By Function

on is
4.1.2.2 ALU Two-Operand Instructions

Table 4-7 describes ALU instructions that use two operands, along with the MIPS ISA within which an instructi
defined.

4.1.2.3 Shift Instructions

The ISA defines two types of shift instructions:

• Those that take a fixed shift amount from a 5-bit field in the instruction word (for instance, SLL, SRL)

• Those that take a shift amount from the low-order bits of a general register (for instance, SRAV, SRLV)

Shift instructions are listed in Table 4-9, along with the MIPS ISA within which an instruction is defined.

OR Or MIPS32

SLT Set on Less Than MIPS32

SLTU Set on Less Than Unsigned MIPS32

SUB Subtract Word MIPS32

SUBUa Subtract Unsigned Word MIPS32

XOR Exclusive Or MIPS32

a. The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not trap on overflow.

Table 4-8 Three-Operand ALU Instructions

Mnemonic Instruction Defined in MIPS ISA

CLO Count Leading Ones in Word MIPS32

CLZ Count Leading Zeros in Word MIPS32

NOR Nor MIPS32

OR Or MIPS32

XOR Exclusive Or MIPS32

Table 4-9 Shift Instructions

Mnemonic Instruction Defined in MIPS ISA

SLL Shift Word Left Logical MIPS32

SLLV Shift Word Left Logical Variable MIPS32

SRA Shift Word Right Arithmetic MIPS32

SRAV Shift Word Right Arithmetic Variable MIPS32

SRL Shift Word Right Logical MIPS32

SRLV Shift Word Right Logical Variable MIPS32

Table 4-7 Three-Operand ALU Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 29

Chapter 4 Overview of the CPU Instruction Set

one
f

ds

n

4.1.2.4 Multiply and Divide Instructions

The multiply and divide instructions produce twice as many result bits as is typical with other processors. With
exception, they deliver their results into theHI andLO special registers. The MUL instruction delivers the lower half o
the result directly to a GPR.

• Multiply produces a full-width product twice the width of the input operands; the low half is loaded intoLO and the
high half is loaded intoHI.

• Multiply-Add andMultiply-Subtract produce a full-width product twice the width of the input operations and ad
or subtracts the product from the concatenated value ofHI andLO. The low half of the addition is loaded intoLO and
the high half is loaded intoHI.

• Divide produces a quotient that is loaded intoLO and a remainder that is loaded intoHI.

The results are accessed by instructions that transfer data betweenHI/LO and the general registers.

Table 4-10 lists the multiply, divide, andHI/LO move instructions, along with the MIPS ISA within which an instructio
is defined.

4.1.3 Jump and Branch Instructions

This section describes the following:

• “Types of Jump and Branch Instructions Defined by the ISA”

• “Branch Delays and the Branch Delay Slot”

• “Branch and Branch Likely”

• “List of Jump and Branch Instructions”

Table 4-10 Multiply/Divide Instructions

Mnemonic Instruction Defined in MIPS ISA

DIV Divide Word MIPS32

DIVU Divide Unsigned Word MIPS32

MADD Multiply and Add Word MIPS32

MADDU Multiply and Add Word Unsigned MIPS32

MFHI Move From HI MIPS32

MFLO Move From LO MIPS32

MSUB Multiply and Subtract Word MIPS32

MSUBU Multiply and Subtract Word Unsigned MIPS32

MTHI Move To HI MIPS32

MTLO Move To LO MIPS32

MUL Multiply Word to Register MIPS32

MULT Multiply Word MIPS32

MULTU Multiply Unsigned Word MIPS32
30 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

4.1 CPU Instructions, Grouped By Function

to be

e
able;

delay

aid to

solute

nch
 4-14
4.1.3.1 Types of Jump and Branch Instructions Defined by the ISA

The architecture defines the following jump and branch instructions:

• PC-relative conditional branch

• PC-region unconditional jump

• Absolute (register) unconditional jump

• A set of procedure calls that record a return link address in a general register.

4.1.3.2 Branch Delays and the Branch Delay Slot

All branches have an architectural delay of one instruction. The instruction immediately following a branch is said
in thebranch delay slot. If a branch or jump instruction is placed in the branch delay slot, the operation of both
instructions is undefined.

By convention, if an exception or interrupt prevents the completion of an instruction in the branch delay slot, th
instruction stream is continued by re-executing the branch instruction. To permit this, branches must be restart
procedure calls may not use the register in which the return link is stored (usually GPR31) to determine the branch target
address.

4.1.3.3 Branch and Branch Likely

There are two versions of conditional branches; they differ in the manner in which they handle the instruction in the
slot when the branch is not taken and execution falls through.

• Branch instructions execute the instruction in the delay slot.

• Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are s
nullify the instruction in the delay slot).

Although the Branch Likely instructions are included in this specification, software is strongly encouraged to
avoid the use of the Branch Likely instructions, as they will be removed from a future revision of the MIPS
Architecture.

4.1.3.4 List of Jump and Branch Instructions

Table 4-11 lists instructions that jump to a procedure call within the current 256 MB-aligned region, or to an ab
address held in a register.

Table 4-11 lists the unconditional jump instructions within a given 256 MByte region. Table 4-12 lists branch
instructions that compare two registers before conditionally executing a PC-relative branch. Table 4-13 lists bra
instructions that test a register—compare with zero—before conditionally executing a PC-relative branch. Table
lists the deprecated Branch Likely Instructions.

Each table also lists the MIPS ISA within which an instruction is defined.

Table 4-11 Unconditional Jump Within a 256 Megabyte Region

Mnemonic Instruction Location to Which Jump Is Made Defined in MIPS
ISA

J Jump 256 Megabyte Region MIPS32

JAL Jump and Link 256 Megabyte Region MIPS32

JALR Jump and Link Register Absolute Address MIPS32
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 31

Chapter 4 Overview of the CPU Instruction Set
4.1.4 Miscellaneous Instructions

Miscellaneous instructions include:

• “Instruction Serialization (SYNC)”

• “Exception Instructions”

JALX Jump and Link Exchange Absolute Address MIPS16

JR Jump Register Absolute Address MIPS32

Table 4-12 PC-Relative Conditional Branch Instructions Comparing Two Registers

Mnemonic Instruction Defined in MIPS
ISA

BEQ Branch on Equal MIPS32

BNE Branch on Not Equal MIPS32

Table 4-13 PC-Relative Conditional Branch Instructions Comparing With Zero

Mnemonic Instruction Defined in MIPS
ISA

BGEZ Branch on Greater Than or Equal to Zero MIPS32

BGEZAL Branch on Greater Than or Equal to Zero and Link MIPS32

BGTZ Branch on Greater Than Zero MIPS32

BLEZ Branch on Less Than or Equal to Zero MIPS32

BLTZ Branch on Less Than Zero MIPS32

BLTZAL Branch on Less Than Zero and Link MIPS32

Table 4-14 Deprecated Branch Likely Instructions

Mnemonic Instruction Defined in MIPS
ISA

BEQL Branch on Equal Likely MIPS32

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely MIPS32

BGEZL Branch on Greater Than or Equal to Zero Likely MIPS32

BGTZL Branch on Greater Than Zero Likely MIPS32

BLEZL Branch on Less Than or Equal to Zero Likely MIPS32

BLTZALL Branch on Less Than Zero and Link Likely MIPS32

BLTZL Branch on Less Than Zero Likely MIPS32

BNEL Branch on Not Equal Likely MIPS32

Table 4-11 Unconditional Jump Within a 256 Megabyte Region

Mnemonic Instruction Location to Which Jump Is Made Defined in MIPS
ISA
32 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

4.1 CPU Instructions, Grouped By Function

der of
loads and

ptions,

two
• “Conditional Move Instructions”

• “Prefetch Instructions”

• “NOP Instructions”

4.1.4.1 Instruction Serialization (SYNC)

In normal operation, the order in which load and store memory accesses appear to a vieweroutside the executing
processor (for instance, in a multiprocessor system) is not specified by the architecture.

The SYNC instruction can be used to create a point in the executing instruction stream at which the relative or
some loads and stores can be determined: loads and stores executed before the SYNC are completed before
stores after the SYNC can start.

Table 4-15 lists the SYNC instruction, along with the MIPS ISA within which it is defined.

4.1.4.2 Exception Instructions

Exception instructions transfer control to a software exception handler in the kernel. There are two types of exce
conditional andunconditional. These are caused by the following instructions:

Trap instructions, which cause conditional exceptions based upon the result of a comparison

System call and breakpoint instructions, which cause unconditional exceptions

Table 4-16 lists the system call and breakpoint instructions. Table 4-17 lists the trap instructions that compare
registers. Table 4-18 lists trap instructions, which compare a register value with animmediate value.

Each table also lists the MIPS ISA within which an instruction is defined.

Table 4-15 Serialization Instruction

Mnemonic Instruction Defined in MIPS ISA

SYNC Synchronize Shared Memory MIPS32

Table 4-16 System Call and Breakpoint Instructions

Mnemonic Instruction Defined in MIPS ISA

BREAK Breakpoint MIPS32

SYSCALL System Call MIPS32

Table 4-17 Trap-on-Condition Instructions Comparing Two Registers

Mnemonic Instruction Defined in MIPS ISA

TEQ Trap if Equal MIPS32

TGE Trap if Greater Than or Equal MIPS32

TGEU Trap if Greater Than or Equal Unsigned MIPS32

TLT Trap if Less Than MIPS32

TLTU Trap if Less Than Unsigned MIPS32II
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 33

Chapter 4 Overview of the CPU Instruction Set

 a third

fetched

g as
issue
4.1.4.3 Conditional Move Instructions

MIPS32 includes instructions to conditionally move one CPU general register to another, based on the value in
general register. For floating point conditional moves, refer to Chapter 4.

Table 4-19 lists conditional move instructions, along with the MIPS ISA within which an instruction is defined.

4.1.4.4 Prefetch Instructions

There is one prefetch advisory instruction:

• One with register+offset addressing (PREF)

These instructions advise that memory is likely to be used in a particular way in the near future and should be pre
into the cache.

4.1.4.5 NOP Instructions

The NOP instruction is actually encoded as an all-zero instruction. MIPS processors special-case this encodin
performing no operation, and optimize execution of the instruction. In addition, SSNOP instruction, takes up one
cycle on any processor, including super-scalar implementations of the architecture.

TNE Trap if Not Equal MIPS32

Table 4-18 Trap-on-Condition Instructions Comparing an Immediate Value

Mnemonic Instruction Defined in MIPS ISA

TEQI Trap if Equal Immediate MIPS32

TGEI Trap if Greater Than or Equal Immediate MIPS32

TGEIU Trap if Greater Than or Equal Immediate Unsigned MIPS32

TLTI Trap if Less Than Immediate MIPS32

TLTIU Trap if Less Than Immediate Unsigned MIPS32

TNEI Trap if Not Equal Immediate MIPS32

Table 4-19 CPU Conditional Move Instructions

Mnemonic Instruction Defined in MIPS ISA

MOVF Move Conditional on Floating Point False MIPS32

MOVN Move Conditional on Not Zero MIPS32

MOVT Move Conditional on Floating Point True MIPS32

MOVZ Move Conditional on Zero MIPS32

Table 4-20 Prefetch Instructions

Mnemonic Instruction Addressing Mode Defined in MIPS ISA

PREF Prefetch Register+Offset MIPS32

Table 4-17 Trap-on-Condition Instructions Comparing Two Registers

Mnemonic Instruction Defined in MIPS ISA
34 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

4.1 CPU Instructions, Grouped By Function

f these

rocessor

set.
Table 4-21 lists conditional move instructions, along with the MIPS ISA within which an instruction is defined.

4.1.5 Coprocessor Instructions

This section contains information about the following:

• “What Coprocessors Do”

• “System Control Coprocessor 0 (CP0)”

• “Floating Point Coprocessor 1 (CP1)”

• “Coprocessor Load and Store Instructions”

4.1.5.1 What Coprocessors Do

Coprocessors are alternate execution units, with register files separate from the CPU. In abstraction, the MIPS
architecture provides for up to four coprocessor units, numbered 0 to 3. Each level of the ISA defines a number o
coprocessors, as listed in Table 4-22.

Coprocessor 0 is always used for system control and coprocessor 1 and 3 are used for the floating point unit. Cop
2 is reserved for implementation-specific use.

A coprocessor may have two different register sets:

• Coprocessor general registers

• Coprocessor control registers

Each set contains up to 32 registers. Coprocessor computational instructions may use the registers in either

Table 4-21 NOP Instructions

Mnemonic Instruction Defined in MIPS ISA

NOP No Operation MIPS32

SSNOP Superscalar Inhibit NOP MIPS32

Table 4-22 Coprocessor Definition and Use in the MIPS Architecture

Coprocessor MIPS32 MIPS64

CP0 Sys Control Sys Control

CP1 FPU FPU

CP2 implementation specific

CP3 implementation specific FPU (COP1X)
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 35

Chapter 4 Overview of the CPU Instruction Set

ctions
mmarized

ee
4.1.5.2 System Control Coprocessor 0 (CP0)

The system controller for all MIPS processors is implemented as coprocessor 0 (CP01), theSystem Control
Coprocessor. It provides the processor control, memory management, and exception handling functions.

4.1.5.3 Floating Point Coprocessor 1 (CP1)

If a system includes aFloating Point Unit , it is implemented as coprocessor 1 (CP12). Details of the FPU instructions
are documented in Chapter 5, “Overview of the FPU Instruction Set,” on page 39.

Coprocessor instructions are divided into two main groups:

• Load and store instructions (move to and from coprocessor), which are reserved in the mainopcode space

• Coprocessor-specific operations, which are defined entirely by the coprocessor

4.1.5.4 Coprocessor Load and Store Instructions

Explicit load and store instructions are not defined for CP0; for CP0 only, the move to and from coprocessor instru
must be used to write and read the CP0 registers. The loads and stores for the remaining coprocessors are su
in “Coprocessor Loads and Stores” on page 27.

4.2 CPU Instruction Formats

A CPU instruction is a single 32-bit aligned word. The CPU instruction formats are shown below:

• Immediate (seeFigure 4-1)

• Jump (seeFigure 4-2)

• Register (seeFigure 4-3)

1 CP0 instructions use the COP0 opcode, and as such are differentiated from the CP0 designation in this book.

2 FPU instructions (such as LWC1, SDC1, etc.) that use the COP1 opcode are differentiated from the CP1 designation in this book. S
Chapter 5, “Overview of the FPU Instruction Set,” on page 39 for more information about the FPU instructions.
36 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

4.2 CPU Instruction Formats
Table 4-23 describes the fields used in these instructions.

Figure 4-1 Immediate (I-Type) CPU Instruction Format

Figure 4-2 Jump (J-Type) CPU Instruction Format

Figure 4-3 Register (R-Type) CPU Instruction Format

Table 4-23 CPU Instruction Format Fields

Field Description

opcode 6-bit primary operation code

rd 5-bit specifier for the destination register

rs 5-bit specifier for the source register

rt 5-bit specifier for the target (source/destination) register or used to specify functions within the
primaryopcode REGIMM

immediate 16-bit signedimmediate used for logical operands, arithmetic signed operands, load/store
address byte offsets, and PC-relative branch signed instruction displacement

instr_index 26-bit index shifted left two bits to supply the low-order 28 bits of the jump target address

sa 5-bit shift amount

function 6-bit function field used to specify functions within the primaryopcode SPECIAL

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16

31 26 25 21 20 16 15 11 10 6 5 0

opcode instr_index

6 26

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd sa function

6 5 5 5 5 6
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 37

Chapter 4 Overview of the CPU Instruction Set
38 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

cture.
r

ot

as the
r, these
provide

ided by
causes

y

Chapter 5c

Overview of the FPU Instruction Set

This chapter describes the instruction set architecture (ISA) for the floating point unit (FPU) in the MIPS32 archite
In the MIPS architecture, the FPU is implemented via Coprocessor 1 and Coprocessor 3, an optional processo
implementing IEEE Standard 7541 floating point operations. The FPU also provides a few additional operations n
defined by the IEEE standard.

This chapter provides an overview of the following FPU architectural details:

• Section 5.1 , "Binary Compatibility"

• Section 5.2 , "Enabling the Floating Point Coprocessor"

• Section 5.3 , "IEEE Standard 754"

• Section 5.4 , "FPU Data Types"

• Section 5.5 , "Floating Point Register Types"

• Section 5.6 , "Floating Point Control Registers (FCRs)"

• Section 5.7 , "Formats of Values Used in FP Registers"

• Section 5.8 , "FPU Exceptions"

• Section 5.9 , "FPU Instructions"

• Section 5.10 , "Valid Operands for FPU Instructions"

• Section 5.11 , "FPU Instruction Formats"

The FPU instruction set is summarized by functional group. Each instruction is also described individually in
alphabetical order in Volume II.

5.1 Binary Compatibility

In addition to an Instruction Set Architecture, the MIPS architecture definition includes processing resources such
set of coprocessor general registers. The 32-bit registers in MIPS32 were enlarged to 64-bits in MIPS64; howeve
64-bit FPU registers are not backwards compatible. Instead, processors implementing the MIPS64 Architecture
a mode bit to select either the 32-bit or 64-bit register model.

Any processor implementing MIPS64 can also run MIPS32 binary programs without change.

5.2 Enabling the Floating Point Coprocessor

Enabling the Floating Point Coprocessor is done by enabling Coprocessor 1, and is a privileged operation prov
the System Control Coprocessor. If Coprocessor 1 is not enabled, an attempt to execute a floating point instruction

1 In this chapter, references to “IEEE standard” and “IEEE Standard 754” refer to IEEE Standard 754-1985, “IEEE Standard for Binar
Floating Point Arithmetic.” For more information about this standard, see the IEEE web page at http://stdsbbs.ieee.org/.
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 39

Chapter 5 Overview of the FPU Instruction Set

a means
a Coprocessor Unusable exception. Every system environment either enables the FPU automatically or provides
for an application to request that it is enabled.

5.3 IEEE Standard 754

IEEE Standard 754 defines the following:

• Floating point data types

• The basic arithmetic, comparison, and conversion operations

• A computational model

The IEEE standard does not define specific processing resources nor does it define an instruction set.

The MIPS architecture includes non-IEEE FPU control and arithmetic operations (multiply-add, reciprocal, and
reciprocal square root) which may not supply results that match the IEEE precision rules.

5.4 FPU Data Types

The FPU provides both floating point and fixed point data types, which are described in the next two sections.

• The single and double precision floating point data types are those specified by the IEEE standard.

• The fixed point types are signed integers provided by the CPU architecture.

5.4.1 Floating Point Formats

The following three floating point formats are provided by the FPU:

• 32-bitsingle precision floating point (typeS, shown inFigure 5-1)

• 64-bitdouble precision floating point (typeD, shown inFigure 5-2)

The floating point data types represent numeric values as well as other special entities, such as the following:

• Two infinities,+∞ and -∞

• Signaling non-numbers (SNaNs)

• Quiet non-numbers (QNaNs)s

• Numbers of the form: (-1)s 2E b0.b1 b2..bp-1, where:

– s=0 or 1

– E=any integer betweenE_min andE_max, inclusive

– bi=0 or 1 (the high bit, b0, is to the left of the binary point)

– p is the signed-magnitude precision

Table 5-1 Parameters of Floating Point Data Types

Parameter Single Double

Bits of mantissa precision, p 24 53

Maximum exponent, E_max +127 +1023
40 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.4 FPU Data Types
The single and double floating point data types are composed of three fields—sign, exponent, fraction—whose sizes are
listed inTable 5-1.

Layouts of these fields are shown in Figures5-1, and5-2 below. The fields are

• 1-bit sign,s

• Biased exponent,e=E + bias

• Binary fraction,f=.b1 b2..bp-1 (theb0 bit is not recorded)

Figure 5-1 Single-Precisions Floating Point Format (S)

Figure 5-2 Double-Precisions Floating Point Format (D)

Values are encoded in the specified format by using unbiased exponent, fraction, and sign values listed inTable 5-2. The
high-order bit of theFraction field, identified asb1, is also important for NaNs.

Minimum exponent, E_min -126 -1022

Exponentbias +127 +1023

Bits in exponent field,e 8 11

Representation ofb0 integer bit hidden hidden

Bits in fraction field,f 23 52

Total format width in bits 32 64

3
1

3
0

2
3

2
2

0

S Exponent Fraction

1 8 23

6
3

6
2

5
2

5
1

0

S Exponent Fraction

1 11 52

Table 5-2 Value of Single or Double Floating Point DataType Encoding

Unbiased E f s b1 Value V Type of Value TypicalSingle
Bit Patterna

Typical Double Bit
Patterna.

E_max + 1 ≠ 0
1 SNaN Signaling NaN 16#7fffffff 16#7fffffff ffffffff

0 QNaN Quiet NaN 16#7fbfffff 16#7ff7ffff ffffffff

E_max +1 0
1 - ∞ minus infinity 16#ff800000 16#fff00000 00000000

0 + ∞ plus infinity 16#7f800000 16#7ff00000 00000000

Table 5-1 Parameters of Floating Point Data Types

Parameter Single Double
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 41

Chapter 5 Overview of the FPU Instruction Set

are kept
d
lue

s,
EE
 a result
efines

resent a
d

such

s.

fact th
ent these
5.4.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers
in normalized form. The high-order bit of thep-bit mantissa, which lies to the left of the binary point, is “hidden,” an
not recorded in theFractionfield. The encoding rules permit the value of this bit to be determined by looking at the va
of the exponent. When the unbiased exponent is in the rangeE_minto E_max, inclusive, the number is normalized and
the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be less thanE_min,
then the representation is denormalized and the encoded number has an exponent ofE_min-1 and the hidden bit has the
value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

5.4.1.2 Reserved Operand Values—Infinity and NaN

A floating point operation can signal IEEE exception conditions, such as those caused by uninitialized variable
violations of mathematical rules, or results that cannot be represented. If a program does not choose to trap IE
exception conditions, a computation that encounters these conditions proceeds without trapping but generates
indicating that an exceptional condition arose during the computation. To permit this, each floating point format d
representations, listed inTable 5-2, for plus infinity (+∞), minus infinity (-∞), quiet non-numbers (QNaN), and signaling
non-numbers (SNaN).

5.4.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the format; in essence it exists to rep
magnitude overflow during a computation. A correctly signed∞ is generated as the default result in division by zero an
some cases of overflow; details are given in the IEEE exception condition described in.

Once created as a default result,∞ can become an operand in a subsequent operation. The infinities are interpreted
that -∞ < (every finite number) < +∞. Arithmetic with∞ is the limiting case of real arithmetic with operands of
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on∞ is regarded as exact and exception
conditions do not arise. The out-of-range indication represented by∞ is propagated through subsequent computation
For some cases there is no meaningful limiting case in real arithmetic for operands of∞, and these cases raise the Invalid
Operation exception condition (see “Invalid Operation Exception” on page 53).

E_max
 to

E_min

1 - (2E)(1.f) negative normalized
number

16#80800000
 through
16#ff7fffff

16#80100000 00000000
 through
16#ffefffff ffffffff

0 + (2E)(1.f) positive normalized number
16#00800000
 through
16#7f7fffff

16#00100000 00000000
 through
16#7fefffff ffffffff

E_min -1 ≠ 0

1 - (2E_min)(0.f) negative denormalized
number 16#807fffff 16#800fffff ffffffff

0 + (2E_min)(0.f) positive denormalized
number 16#007fffff 16#00ffffff ffffffff

E_min -1 0
1 - 0 negative zero 16#80000000 16#80000000 00000000

0 + 0 positive zero 16#00000000 16#00000000 00000000

a. The "Typical" nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign may have either value (NaN) and theat
the fraction field may have any non-zero value (both). As such, the bit patterns shown are one value in a class of potential values that repres
special values.

Table 5-2 Value of Single or Double Floating Point DataType Encoding

Unbiased E f s b1 Value V Type of Value TypicalSingle
Bit Patterna

Typical Double Bit
Patterna.
42 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.4 FPU Data Types

ut in

d
erand

esults.
metic

livered,
e of the
esult—
ction,

 is not
lue
when a
etects

point
integers
5.4.1.4 Signalling Non-Number (SNaN)

SNaN operands cause the Invalid Operation exception for arithmetic operations. SNaNs are useful values to p
uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invali
Operation exception is the implementor’s option.” The MIPS architecture has chosen to make the formatted op
move instructions (MOV.fmt MOVT.fmt MOVF.fmt MOVN.fmt MOVZ.fmt) non-arithmetic and they do not signal
IEEE 754 exceptions.

5.4.1.5 Quiet Non-Number (QNaN)

QNaNs are intended to afford retrospective diagnostic information inherited from invalid or unavailable data and r
Propagation of the diagnostic information requires information contained in a QNaN to be preserved through arith
operations and floating point format conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating point result is to be de
a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is on
operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a floating point r
specifically, comparisons. (For more information, see the detailed description of the floating point compare instru
C.cond.fmt.)

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap
enabled), a new QNaN value is created.Table 5-3shows the QNaN value generated when no input operand QNaN va
can be copied. The values listed for the fixed point formats are the values supplied to satisfy the IEEE standard
QNaN or infinite floating point value is converted to fixed point. There is no other feature of the architecture that d
or makes use of these “integer QNaN” values.

Fixed Point Formats

The FPU provides one fixed point data type:

• 32-bitWord fixed point (typeW), shown in Figure 5-3

The fixed point values are held in the 2’s complement format used for signed integers in the CPU. Unsigned fixed
data types are not provided by the architecture; application software may synthesize computations for unsigned
from the existing instructions and data types.

Figure 5-3 Word Fixed Point Format (W)

Table 5-3 Value Supplied When a New Quiet NaN Is Created

Format New QNaN value

Single floating point 16#7fbf ffff

Double floating point 16#7ff7 ffff ffff ffff

Word fixed point 16#7fff ffff

3
1

3
0

0

S Integer

1 31
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 43

Chapter 5 Overview of the FPU Instruction Set

FPR

with

operand
rs.

tify

execute

e
ting
5.5 Floating Point Register Types

This section describes the organization and use of the two types of FPU register sets:

• Floating Pointregisters (FPRs) are 64 bits wide. Depending on the mode of operation, there are either 16 or 32
registers in the register file. The FR Bit of the CP0 Status register determines which mode is selected:

– WhenThe FR Bit is a 1, the FPU defines 32 FPRs

– WhenThe FR Bit is a 0, the FPU defines 16 FPRs (this mode is supported only for backward compatibility
the MIPS32 Architecture)

These registers transfer binary data between the FPU and the system, and are also used to hold formatted FPU
values. Refer to Volume III, The MIPS Privileged Architecture Manual, for more information on the CP0 Registe

• Floating Point Controlregisters (FCRs), which are 32 bits wide. There are five FPU control registers, used to iden
and control the FPU. These registers are indicated by thefs field of the instruction word. Three of these registers,
FCCR, FEXR, andFENR, select subsets of the floating pointControl/Status register, theFCSR.

5.5.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify thefloating point register (FPR) that holds the value.

5.6 Floating Point Control Registers (FCRs)

The MIPS32 Architecture supports the following five floating pointControl registers (FCRs):

• FIR, FPImplementation and Revision register

• FCCR, FPCondition Codes register

• FEXR, FPExceptions register

• FENR, FPEnables register

• FCSR, FPControl/Status register (used to be known asFCR31).

FCCR, FEXR, andFENR access portions of theFCSR through CTC1 and CFC1 instructions.

Access to the Floating Point Control Registers is not privileged; they can be accessed by any program that can
floating point instructions. The FCRs can be accessed via the CTC1 and CFC1 instructions.

5.6.1 Floating Point Implementation Register (FCCR, CP1 Control Register 0)

Compliance Level:Required if floating point is implemented

The Floating Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying th
capabilities of the floating point unit, the floating point processor identification, and the revision level of the floa
point unit. Figure 5-4 shows the format of theFIR register;Table 5-4 describes theFIR register fields.

Figure 5-4 FIR Register Format

31 20 19 18 17 16 15 8 7 0

0
0000 0000 0000 3D PS D S ProcessorID Revision
44 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.6 Floating Point Control Registers (FCRs)

nt

t (via
5.6.2 Floating Point Control and Status Register (FCSR, CP1 Control Register 31)

Compliance Level:Required if floating point is implemented.

The Floating Point Control and Status Register (FCSR) is a 32-bit register that controls the operation of the floating poi
unit, and shows the following status information:

• selects the default rounding mode for FPU arithmetic operations

• selectively enables traps of FPU exception conditions

• controls some denormalized number handling options

• reports any IEEE exceptions that arose during the most recently executed instruction

• reports IEEE exceptions that arose, cumulatively, in completed instructions

• indicates the condition code result of FP compare instructions

Access toFCSRis not privileged; it can be read or written by any program that has access to the floating point uni
the coprocessor enables in theStatusregister). Figure 5-5 shows the format of theFCSRregister;Table 5-5describes the
FCSR register fields.

Table 5-4 FIR Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

0 31:20 Reserved for future use; reads as zero 0 0 Reserved

3D 19
Used by MIPS64 processors to indicate that the
MIPS-3D ASE is implemented. Not used by MIPS32
processors and always reads as zero.

0 0 Required

PS 18
Used by MIPS64 processors to indicate that the
pair-single floating point data type is implemented. Not
used by MIPS32 processors and always reads as zero.

0 0 Required

D 17

Indicates that the double-precision (D) floating point
data type and instructions are implemented:

 0: D floating not implemented

 1: D floating implemented

R Preset Required

S 16

Indicates that the single-precision (S) floating point
data type and instructions are implemented:

 0: S floating not implemented

 1: S floating implemented

R Preset Required

ProcessorID 15:8 Identifies the floating point processor. R Preset Required

Revision 7:0

Specifies the revision number of the floating point unit.
This field allows software to distinguish between one
revision and another of the same floating point
processor type. If this field is not implemented, it must
read as zero.

R Preset Optional
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 45

Chapter 5 Overview of the FPU Instruction Set
Figure 5-5 FCSR Register Format

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FCC FS FCC Impl 0
000 Cause Enables Flags RM

7 6 5 4 3 2 1 0 E V Z O U I V Z O U I V Z O U I

Table 5-5 FCSR Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

FCC 31:25, 23

Floating point condition codes. These bits record the
result of floating point compares and are tested for
floating point conditional branches and conditional
moves. The FCC bit to use is specified in the compare,
branch, or conditional move instruction. For backward
compatibility with previous MIPS ISAs, the FCC bits
are separated into two, non-contiguous fields.

R/W Undefined Required

FS 24

Flush to Zero. When FS is one, denormalized results
are flushed to zero instead of causing an
Unimplemented Operation exception. It is
implementation dependent whether denormalized
operand values are flushed to zero before the operation
is carried out.

R/W Undefined Required

Impl 22:21

Available to control implementation dependent
features of the floating point unit. If these bits are not
implemented, they must be ignored on write and read as
zero.

R/W Undefined Optional

0 20:18 Reserved for future use; Must be written as zero;
returns zero on read. 0 0 Reserved

Cause 17:12

Cause bits. These bits indicate the exception conditions
that arise during execution of an FPU arithmetic
instruction. A bit is set to 1 if the corresponding
exception condition arises during the execution of an
instruction and is set to 0 otherwise. By reading the
registers, the exception condition caused by the
preceding FPU arithmetic instruction can be
determined.

Refer toTable 5-6 for the meaning of each bit.

R/W Undefined Required

Enables 11:7

Enable bits. These bits control whether or not a
exception is taken when an IEEE exception condition
occurs for any of the five conditions. The exception
occurs when both an Enable bit and the corresponding
Cause bit are set either during an FPU arithmetic
operation or by moving a value to FCSR or one of its
alternative representations. Note that Cause bit E has
no corresponding Enable bit; the non-IEEE
Unimplemented Operation exception is defined by
MIPS as always enabled.

Refer toTable 5-6 for the meaning of each bit.

R/W Undefined Required
46 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.6 Floating Point Control Registers (FCRs)

lay the
ilarly,
The FCC, FS, Cause, Enables, Flags and RM fields in the FCSR, FCCR, FEXR, and FENR registers always disp
correct state. That is, if a field is written via FCCR, the new value may be read via one of the alternate registers. Sim
if a value is written via one of the alternate registers, the new value may be read via FCSR.

Flags 6:2

Flag bits. This field shows any exception conditions
that have occurred for completed instructions since the
flag was last reset by software.

When a FPU arithmetic operation raises an IEEE
exception condition that does not result in a Floating
Point Exception (i.e., the Enable bit was off), the
corresponding bit(s) in the Flag field are set, while the
others remain unchanged. Arithmetic operations that
result in a Floating Point Exception (i.e., the Enable bit
was on) do not update the Flag bits.

 This field is never reset by hardware and must be
explicitly reset by software.

Refer toTable 5-6 for the meaning of each bit.

R/W Undefined Required

RM 1:0

Rounding mode. This field indicates the rounding
mode used for most floating point operations (some
operations use a specific rounding mode).

Refer toTable 5-7for the meaning of the encodings of
this field.

R/W Undefined Required.

Table 5-6 Cause, Enable, and Flag Bit Definitions

Bit Name Bit Meaning

E Unimplemented Operation (this bit exists only in the
Cause field)

V Invalid Operation

Z Divide by Zero

O Overflow

U Underflow

I Inexact

Table 5-7 Rounding Mode Definitions

RM Field
Encoding

Meaning

0

RN - Round to Nearest

Rounds the result to the nearest representable value. When two representable values are equally
near, the result is rounded to the value whose least significant bit is zero (that is, even)

1
RZ - Round Toward Zero

Rounds the result to the value closest to but not greater than in magnitude than the result.

Table 5-5 FCSR Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 47

Chapter 5 Overview of the FPU Instruction Set

n

that
5.6.3 Floating Point Condition Codes Register (FCCR, CP1 Control Register 25)

Compliance Level:Required if floating point is implemented.

The Floating Point Condition Codes Register (FCCR) is an alternative way to read and write the floating point conditio
code values that also appear inFCSR. UnlikeFCSR, all eight FCC bits are contiguous inFCCR. Figure 5-6 shows the
format of theFCCR register;Table 5-8 describes theFCCR register fields.

5.6.4 Floating Point Exceptions Register (FEXR, CP1 Control Register 26)

Compliance Level:Required if floating point is implemented.

The Floating Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flags fields
also appear inFCSR. Figure 5-7 shows the format of theFEXR register;Table 5-9 describes theFEXR register fields.

2
RP - Round Towards Plus Infinity

Rounds the result to the value closest to but not less than the result.

3
RM - Round Towards Minus Infinity

Rounds the result to the value closest to but not greater than the result.

Figure 5-6 FCCR Register Format

31 8 7 0

0
0000 0000 0000 0000 0000 0000 FCC

7 6 5 4 3 2 1 0

Table 5-8 FCCR Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

0 31:8 Must be written as zero; returns zero on read 0 0 Reserved

FCC 7:0 Floating point condition code. Refer to the description
of this field in theFCSR register. R/W Undefined Required

Figure 5-7 FEXR Register Format

31 18 17 16 15 14 13 12 11 7 6 5 4 3 3 1 0

0
0000 0000 0000 00 Cause 0

00 000 Flags 0
00

E V Z O U I V Z O U I

Table 5-7 Rounding Mode Definitions

RM Field
Encoding

Meaning
48 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.7 Formats of Values Used in FP Registers

hat

ding of
ay be
5.6.5 Floating Point Enables Register (FENR, CP1 Control Register 28)

Compliance Level:Required if floating point is implemented.

The Floating Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields t
also appear inFCSR. Figure 5-8 shows the format of theFENR register;Table 5-10 describes theFENR register fields.

5.7 Formats of Values Used in FP Registers

Unlike the CPU, the FPU does not interpret the binary encoding of source operands nor produce a binary enco
results for every operation. The value held in a floating point operand register (FPR) has a format, or type, and it m
used only by instructions that operate on that format. The format of a value is eitheruninterpreted, unknown, or one of
the valid numeric formats:single anddouble floating point, andword andlong fixed point.

The value in an FPR is always set when a value is written to the register:

Table 5-9 FEXR Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

0
31:18,
11:7,
1:0

Must be written as zero; returns zero on read 0 0 Reserved

Cause 17:12 Cause bits. Refer to the description of this field in the
FCSR register. R/W Undefined Required

Flags 6:2 Flags bits. Refer to the description of this field in the
FCSR register. R/W Undefined Optional

Figure 5-8 FENR Register Format

31 12 11 10 9 8 7 6 3 2 1 0

0
0000 0000 0000 0000 0000 Enables 0

000 0 FS RM

V Z O U I

Table 5-10 FENR Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

0 31:12,
6:3 Must be written as zero; returns zero on read 0 0 Reserved

Enables 11:7 Enable bits. Refer to the description of this field in the
FCSR register. R/W Undefined Required

FS 2 Flush to Zero bit. Refer to the description of this field
in theFCSR register. R/W Undefined Required

RM 1:0 Rounding mode. Refer to the description of this field in
theFCSR register. R/W Undefined Required
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 49

Chapter 5 Overview of the FPU Instruction Set

t is

ormat
of

f a
e

 transfer

ed.
• When a data transfer instruction writes binary data into an FPR (a load), the FPR receives a binary value tha
uninterpreted.

• A computational or FP register move instruction that produces a result of typefmt puts a value of typefmt into the
result register.

When an FPR with anuninterpreted value is used as a source operand by an instruction that requires a value of f
fmt, the binary contents are interpreted as an encoded value in formatfmtand the value in the FPR changes to a value
formatfmt. The binary contents cannot be reinterpreted in a different format.

If an FPR contains a value of formatfmt, a computational instruction must not use the FPR as a source operand o
different format. If this occurs, the value in the register becomesunknownand the result of the instruction is also a valu
that isunknown. Using an FPR containing anunknownvalue as a source operand produces a result that has anunknown
value.

The format of the value in the FPR is unchanged when it is read by a data transfer instruction (a store). A data
instruction produces a binary encoding of the value contained in the FPR. If the value in the FPR isunknown, the encoded
binary value produced by the operation is not defined.

The state diagram in Figure 5-9 illustrates the manner in which the formatted value in an FPR is set and chang
50 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.8 FPU Exceptions
Figure 5-9 Effect of FPU Operations on the Format of Values Held in FPRs

5.8 FPU Exceptions

This section provides the following information FPU exceptions:

• Precise exception mode

• Descriptions of the exceptions

FPU exceptions are implemented in the MIPS FPU architecture with theCause, Enable,and Flag fields of the
Control/Status register. TheFlag bits implement IEEE exception status flags, and theCause andEnable bits control
exception trapping. Each field has a bit for each of the five IEEE exception conditions and theCause field has an
additional exception bit, Unimplemented Operation, used to trap for software emulation assistance.

A, B:Example formats
Load:Destination of LWC1, LDC1, or MTC1 instructions.
Store:Source operand of SWC1, SDC1, or MFC1 instructions.
Src fmt:Source operand of computational instruction expecting format “fmt.”
Rslt fmt:Result of computational instruction producing value of format “fmt.”

Load
Store

Rslt
unknown Rslt A Rslt B

Src A
(interpret)

Src B
(interpret)

B Load

Rslt A

Src B Src A

Rslt A Rslt B

Rslt
unknown

Rslt
unknown

Src A
Src B
Store Load

Src A
Rslt A
Store

Src B
Rslt B
Store

Value in
format

Value
uninterpreted

(binary
encoding)

Value in
format

Value
unknown
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 51

Chapter 5 Overview of the FPU Instruction Set

, can
truction

r,

E
tion

s that
the

ption
t With

andard
cture
precise
5.8.0.1 Precise Exception Mode

In precise exception mode, a trap occurs before the instruction that causes the trap, or any following instruction
complete and write its results. If desired, the software trap handler can resume execution of the interrupted ins
stream after handling the exception.

TheCause field reports per-bit instruction exception conditions. TheCause bits are written during each floating point
arithmetic operation to show any exception conditions that arise during the operation. The bit is set to 1 if the
corresponding exception condition arises; otherwise it is set to 0.

A floating point trap is generated any time both aCausebit and its correspondingEnablebit are set. This occurs either
during the execution of a floating point operation or by moving a value into theFCSR. There is noEnable for
Unimplemented Operation; this exception always generates a trap.

In a trap handler, exception conditions that arise during any trapped floating point operations are reported in theCause
field. Before returning from a floating point interrupt or exception, or before settingCausebits with a move to theFCSR,
software must first clear the enabledCausebits by executing a move toFCSRto prevent the trap from being erroneously
retaken.

User-mode programs cannot observe enabledCausebits being set. If this information is required in a User-mode handle
it must be available someplace other than through theStatus register.

If a floating point operation sets only non-enabledCausebits, no trap occurs and the default result defined by the IEE
standard is stored (seeTable 5-11). When a floating point operation does not trap, the program can monitor the excep
conditions by reading theCause field.

TheFlag field is a cumulative report of IEEE exception conditions that arise as instructions complete; instruction
trap do not update theFlag bits. TheFlag bits are set to 1 if the corresponding IEEE exception is raised, otherwise
bits are unchanged. There is noFlag bit for the MIPS Unimplemented Operation exception. TheFlag bits are never
cleared as a side effect of floating point operations, but may be set or cleared by moving a new value into theFCSR.

Addressing exceptions are precise.

5.8.1 Exception Conditions

The following five exception conditions defined by the IEEE standard are described in this section:

• “Invalid Operation Exception”

• “Division By Zero Exception”

• “Underflow Exception”

• “Overflow Exception”

• “Inexact Exception”

This section also describes a MIPS-specific exception condition,Unimplemented Operation, that is used to signal a
need for software emulation of an instruction. Normally an IEEE arithmetic operation can cause only one exce
condition; the only case in which two exceptions can occur at the same time are Inexact With Overflow and Inexac
Underflow.

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a trap. The IEEE st
specifies the result to be delivered in case the exception is not enabled and no trap is taken. The MIPS archite
supplies these results whenever the exception condition does not result in a precise trap (that is, no trap or an im
52 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.8 FPU Exceptions

 current

rmed.

finity

 of the
the

finite
trap). The default action taken depends on the type of exception condition, and in the case of the Overflow, the
rounding mode. The default results are summarized inTable 5-11.

5.8.1.1 Invalid Operation Exception

The Invalid Operation exception is signaled if one or both of the operands are invalid for the operation to be perfo
The result, when the exception condition occurs without a precise trap, is a quiet NaN.

These are invalid operations:

• One or both operands are a signaling NaN (except for the non-arithmetic MOV.fmt, MOVT.fmt, MOVF.fmt,
MOVN.fmt, andMOVZ.fmt instructions).

• Addition or subtraction: magnitude subtraction of infinities, such as (+∞) + (-∞) or (-∞) - (-∞).

• Multiplication: 0× ∞, with any signs.

• Division: 0/0 or∞/∞, with any signs.

• Square root: An operand of less than 0 (-0 is a valid operand value).

• Conversion of a floating point number to a fixed point format when either an overflow or an operand value of in
or NaN precludes a faithful representation in that format.

• Some comparison operations in which one or both of the operands is a QNaN value. (The detailed definition
compare instruction, C.cond.fmt, in Volume II has tables showing the comparisons that do and do not signal
exception.)

5.8.1.2 Division By Zero Exception

An implemented divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a
nonzero number. The result, when no precise trap occurs, is a correctly signed infinity. Divisions (0/0) and (∞/0) do not
cause the Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of (∞/0) is a
correctly signed infinity.

5.8.1.3 Underflow Exception

Two related events contribute to underflow:

Table 5-11 Default Result for IEEE Exceptions Not Trapped Precisely

Bit Description Default Action

V Invalid Operation Supplies a quiet NaN.

Z Divide by zero Supplies a properly signed infinity.

U Underflow Supplies a rounded result.

I Inexact Supplies a rounded result. If caused by an overflow without the overflow trap enabled,
supplies the overflowed result.

O Overflow Depends on the rounding mode, as shown below.

0 (RN) Supplies an infinity with the sign of the intermediate result.

1 (RZ) Supplies the format’s largest finite number with the sign of the intermediate result.

2 (RP) For positive overflow values, supplies positive infinity. For negative overflow values, supplies
the format’s most negative finite number.

3 (RM) For positive overflow values, supplies the format’s largest finite number. For negative
overflow values, supplies minus infinity.
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 53

Chapter 5 Overview of the FPU Instruction Set

alized

 same
:

ictly

ese

ange

e and

 and

d

nge

esult.

rt. This

 the
so that
• Tininess: the creation of a tiny nonzero result between±2E_min which, because it is tiny, may cause some other
exception later such as overflow on division

• Loss of accuracy: the extraordinary loss of accuracy during the approximation of such tiny numbers by denorm
numbers

Tininess: The IEEE standard allows choices in detecting these events, but requires that they be detected in the
manner for all operations. The IEEE standard specifies that “tininess” may be detected at either of these times

• After rounding, when a nonzero result computed as though the exponent range were unbounded would lie str
between±2E_min

• Before rounding, when a nonzero result computed as though both the exponent range and the precision were
unbounded would lie strictly between±2E_min

The MIPS architecture specifies that tininess be detected after rounding.

Loss of Accuracy:The IEEE standard specifies that loss of accuracy may be detected as a result of either of th
conditions:

• Denormalization loss, when the delivered result differs from what would have been computed if the exponent r
were unbounded

• Inexact result, when the delivered result differs from what would have been computed if both the exponent rang
precision were unbounded

The MIPS architecture specifies that loss of accuracy is detected as inexact result.

Signalling an Underflow:When an underflow trap is not enabled, underflow is signaled only when both tininess
loss of accuracy have been detected. The delivered result might be zero, denormalized, or 2E_min.

When an underflow trap is enabled (through theFCSR Enablefield bit), underflow is signaled when tininess is detecte
regardless of loss of accuracy.

5.8.1.4 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating point result, were the exponent ra
unbounded, is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate r

5.8.1.5 Inexact Exception

An Inexact exception is signaled if one of the following occurs:

• The rounded result of an operation is not exact

• The rounded result of an operation overflows without an overflow trap

5.8.1.6 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS defined exception that provides software emulation suppo
exception is not IEEE-compliant.

The MIPS architecture is designed so that a combination of hardware and software may be used to implement
architecture. Operations that are not fully supported in hardware cause an Unimplemented Operation exception
software may perform the operation.
54 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.9 FPU Instructions

on is

PU has a
sters are
d, store,

rformed,

ress that

machine,
ibed in
There is noEnable bit for this condition; it always causes a trap. After the appropriate emulation or other operati
done in a software exception handler, the original instruction stream can be continued.

5.9 FPU Instructions

The FPU instructions comprise the following functional groups:

• “Data Transfer Instructions”

• “Arithmetic Instructions”

• “Conversion Instructions”

• “Formatted Operand-Value Move Instructions”

• “Conditional Branch Instructions”

• “Miscellaneous Instructions”

5.9.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers and coprocessor control registers. The F
load/store architecture; all computations are done on data held in coprocessor general registers. The control regi
used to control FPU operation. Data is transferred between registers and the rest of the system with dedicated loa
and move instructions. The transferred data is treated as unformatted binary data; no format conversions are pe
and therefore no IEEE floating point exceptions can occur.

The supported transfer operations are listed inTable 5-12.

5.9.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor loads and stores operate on naturally-aligned data items. An attempt to load or store to an add
is not naturally aligned for the data item causes an Address Error exception. Regardless of byte-ordering (the
endianness), the address of a word or doubleword is the smallest byte address in the object. For a big-endian
this is the most-significant byte; for a little-endian machine, this is the least-significant byte (endianness is descr
“Byte Ordering and Endianness” on page 17).

5.9.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the sameregister+offset addressing as that used by the CPU.

Tables5-13 through 5-14 list the FPU data transfer instructions.

Table 5-12 FPU Data Transfer Instructions

Transfer Direction Data Transferred

FPU general reg ↔ Memory Word/doubleword load/store

FPU general reg ↔ CPU general reg Word move

FPU control reg ↔ CPU general reg Word move

Table 5-13 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic Instruction Defined in MIPS ISA

LDC1 Load Doubleword to Floating Point MIPS32
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 55

Chapter 5 Overview of the FPU Instruction Set

s meet
ounded
ss than

verts
unding
5.9.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating point arithmetic operation
the IEEE standard specification for accuracy—a result is identical to an infinite-precision result that has been r
to the specified format, using the current rounding mode. The rounded result differs from the exact result by le
one unit in the least-significant place (ULP).

FPU IEEE-approximate arithmetic operations are listed in Table 5-15.

5.9.3 Conversion Instructions

These instructions perform conversions between floating point and fixed point data types. Each instruction con
values from a number of operand formats to a particular result format. Some conversion instructions use the ro

LWC1 Load Word to Floating Point MIPS32

SDC1 Store Doubleword to Floating Point MIPS32

SWC1 Store Word to Floating Point MIPS32

Table 5-14 FPU Move To and From Instructions

Mnemonic Instruction Defined in MIPS ISA

CFC1 Move Control Word From Floating Point MIPS32

CTC1 Move Control Word To Floating Point MIPS32

MFC1 Move Word From Floating Point MIPS32

MTC1 Move Word To Floating Point MIPS32

Table 5-15 FPU IEEE Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA

ABS.fmt Floating Point Absolute Value MIPS32

ADD.fmt Floating Point Add MIPS32

C.cond.fmt Floating Point Compare MIPS32

DIV.fmt Floating Point Divide MIPS32

MUL.fmt Floating Point Multiply MIPS32

NEG.fmt Floating Point Negate MIPS32

SQRT.fmt Floating Point Square Root MIPS32

SUB.fmt Floating Point Subtract MIPS32

Table 5-13 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic Instruction Defined in MIPS ISA
56 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.9 FPU Instructions

e

must be

ination
perand
ation,
mode specified in theFloating Control/Status register (FCSR), while others specify the rounding mode directly. Tabl
5-16 and Table 5-17 list the FPU conversion instructions according to their rounding mode.

5.9.4 Formatted Operand-Value Move Instructions

These instructions all move formatted operand values among FPU general registers. A particular operand type
moved by the instruction that handles that type. There are three kinds of move instructions:

• Unconditional move

• Conditional move that tests an FPU true/false condition code

• Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in a way that may be unexpected. They always force the value in the dest
register to become a value of the format specified in the instruction. If the destination register does not contain an o
of the specified format before the conditional move is executed, the contents become undefined. (For more inform
see the individual descriptions of the conditional move instructions in Volume II.)

These instructions are listed in Tables Table 5-18 through Table 5-20.

Table 5-16 FPU Conversion Operations Using theFCSRRounding Mode

Mnemonic Instruction Defined in MIPS ISA

CVT.D.fmt Floating Point Convert to Double Floating Point MIPS32

CVT.S.fmt Floating Point Convert to Single Floating Point MIPS32

CVT.W.fmt Floating Point Convert to Word Fixed Point MIPS32

Table 5-17 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction Defined in MIPS ISA

CEIL.W.fmt Floating Point Ceiling to Word Fixed Point MIPS32

FLOOR.W.fmt Floating Point Floor to Word Fixed Point MIPS32

ROUND.W.fmt Floating Point Round to Word Fixed Point MIPS32

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point MIPS32

Table 5-18 FPU Formatted Operand Move Instructions

Mnemonic Instruction Defined in MIPS ISA

MOV.fmt Floating Point Move MIPS32

Table 5-19 FPU Conditional Move on True/False Instructions

Mnemonic Instruction Defined in MIPS ISA

MOVF.fmt Floating Point Move Conditional on FP False MIPS32

MOVT.fmt Floating Point Move Conditional on FP True MIPS32
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 57

Chapter 5 Overview of the FPU Instruction Set

tions

y
et
ction in

aid to

ard
uous

ted
5.9.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instruc
(C.cond.fmt).

All branches have an architectural delay of one instruction. When a branch is taken, the instruction immediatel
following the branch instruction is said to be in thebranch delay slot, and it is executed before the branch to the targ
instruction takes place. Conditional branches come in two versions, depending upon how they handle an instru
the delay slot when the branch is not taken and execution falls through:

• Branch instructions execute the instruction in the delay slot.

• Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are s
nullify the instruction in the delay slot).

Although the Branch Likely instructions are included in this specification, software is strongly encouraged to
avoid the use of the Branch Likely instructions, as they will be removed from a future revision of the MIPS
Architecture.

The MIPS32 Architecture defines eight condition codes for use in compare and branch instructions. For backw
compatibility with previous revision of the ISA, condition code bit 0 and condition code bits 1 thru 7 are in discontig
fields inFCSR.

Table 5-21 lists the conditional branch (branch and branch likely) FPU instructions; Table 5-22 lists the depreca
conditional branch likely instructions.

Table 5-20 FPU Conditional Move on Zero/Nonzero Instructions

Mnemonic Instruction Defined in MIPS ISA

MOVN.fmt Floating Point Move Conditional on Nonzero MIPS32

MOVZ.fmt Floating Point Move Conditional on Zero MIPS32

Table 5-21 FPU Conditional Branch Instructions

Mnemonic Instruction Defined in MIPS
ISA

BC1F Branch on FP False MIPS32

BC1T Branch on FP True MIPS32

Table 5-22 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction Defined in MIPS
ISA

BC1FL Branch on FP False Likely MIPS32

BC1TL Branch on FP True Likely MIPS32
58 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.10 Valid Operands for FPU Instructions

nother,

fferent
a binary
or

e
chanism
int

n

5.9.6 Miscellaneous Instructions

The MIPS ISA defines various miscellaneous instructions that conditionally move one CPU general register to a
based on an FPU condition code.Table 5-23 lists these conditional move instructions.

5.10 Valid Operands for FPU Instructions

The floating point unit arithmetic, conversion, and operand move instructions operate on formatted values with di
precision and range limits and produce formatted values for results. Each representable value in each format has
encoding that is read from or stored to memory. Thefmtfield of the instruction encodes the operand format required f
the instruction. A conversion instruction specifies the result type in thefunction field; the result of other operations is
given in the same format as the operands. The encodings of thefmt fmt3 field are shown in Table 5-24.

The result of an instruction using operand formats markedU in Table 5-24 is not currently specified by this architectur
and causes an exception. They are being held for future extensions to the architecture. The exact exception me
used is processor specific. Most implementations report this as an Unimplemented Operation for a Floating Po
exception, although some implementations report these combinations as Reserved Instruction exceptions.

In Table 5-25, the result of an instruction using operand formats markedi are invalid and an attempt to execute such a
instruction has an undefined result.

Table 5-23 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction Defined in MIPS ISA

MOVN Move Conditional on FP False MIPS32

MOVZ Move Conditional on FP True MIPS32

Table 5-24 FPU Operand Format Field (fmt) Encoding

fmt Instruction
Mnemonic

Size Data Type

Name Bits

0-15 Reserved

16 S single 32 Floating point

17 D double 64 Floating point

18-19 Reserved

20 W word 32 Fixed point

21 Reserved

22–31 Reserved
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 59

Chapter 5 Overview of the FPU Instruction Set

23.

als.
y have

uction
5.11 FPU Instruction Formats

An FPU instruction is a single 32-bit aligned word. FP instruction formats are shown in Figures 5-10 through 5-

In these figures, variables are labelled in lowercase, such asoffset. Constants are labelled in uppercase, as are numer
Following these figures, Table 5-26 explains the fields used in the instruction layouts. Note that the same field ma
different names in different instruction layouts.

The field name is mnemonic to the function of that field in the instruction layout. The opcode tables and the instr
encode discussion use the canonical field names:opcode, fmt, nd, tf, andfunction. The remaining fields are not used for
instruction encode.

Table 5-25 Valid Formats for FPU Operations

Mnemonic Operation Operand Fmt COP1
Function

ValueFloat Fixed

S D W L

ABS Absolute value • • U U 5

ADD Add • • U U 0

C.cond Floating Point compare • • U U 48–63

CEIL.W Convert to word fixed point, round toward +∞ • • i i 14

CVT.D Convert to double floating point • i • • 33

CVT.S Convert to single floating point i • • • 32

CVT.W Convert to 32-bit fixed point • • i i 36

DIV Divide • • U U 3

FLOOR.W Convert to word fixed point, round toward -∞ • • i i 15

MOV Move Register • • i i 6

MOVC FP Move conditional on condition • • i i 17

MOVN FP Move conditional on GPR≠zero • • i i 19

MOVZ FP Move conditional on GPR=zero • • i i 18

MSUB Multiply-Subtract • • U U

MUL Multiply • • U U 2

NEG Negate • • U U 7

ROUND.W Convert to word fixed point, round to nearest/even• • i i 12

SQRT Square Root • • U U 4

SUB Subtract • • U U 1

TRUNC.W Convert to word fixed point, round toward zero • • i i 13

Key: • − Valid. U − Unimplemented or Reserved.i − Invalid.
60 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.11 FPU Instruction Formats
5.11.1 Implementation Note

When present, the destination FPR specifier may be in thefs, ft or fd field.

Figure 5-10 I-Type (Immediate) FPU Instruction Format

Figure 5-11 R-Type (Register) FPU Instruction Format

Figure 5-12 Register-Immediate FPU Instruction Format

Figure 5-13 Condition Code, Immediate FPU Instruction Format

Figure 5-14 Formatted FPU Compare Instruction Format

Figure 5-15 FP RegisterMove, Conditional Instruction Format

31 26 25 21 20 16 15 0

opcode base ft offset

6 5 5 16

Immediate: Load/Store using register + offset addressing

31 26 25 21 20 16 15 11 10 6 5 0

COP1 fmt ft fs fd function

6 5 5 5 5 6

Register: Two-register and Three-register formatted arithmetic operations

31 26 25 21 20 16 15 11 0

COP1 sub rt fs 0

6 5 5 5 11

Register Immediate: Data transfer, CPU↔ FPU register

31 26 25 21 20 18 17 16 15 0

COP1 BCC1 cc nd tf offset

6 5 3 1 1 16

Condition Code, Immediate: Conditional branches on FPU cc using PC + offset

31 26 25 21 20 16 15 11 10 8 7 6 5 0

COP1 fmt ft fs cc 0 function

6 5 5 5 3 2 6

Register to Condition Code: Formatted FP compare

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1 fmt cc 0 tf fs fd MOVCF

6 5 3 1 1 5 5 6

Condition Code, Register FP: FPU register move-conditional on FP, cc
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 61

Chapter 5 Overview of the FPU Instruction Set
Figure 5-16 Condition Code, Register Integer FPU Instruction Format

31 26 25 21 20 18 17 16 15 11 10 6 5 0

SPECIAL rs cc 0 tf rd 0 MOVCI

6 5 3 1 1 5 5 6

Condition Code, Register Integer: CPU register move-conditional on FP, cc

Table 5-26 FPU Instruction Format Fields

Field Description

BC1 Branch Conditional instruction subcode (op=COP1).

base CPU register: base address for address calculations.

COP1 Coprocessor 1 primaryopcode value inop field.

cc Condition Code specifier; for architectural levels prior to MIPS IV, this must be set to zero.

fd FPU register: destination (arithmetic, loads, move-to) or source (stores, move-from).

fmt Destination and/or operand type (format) specifier.

fr FPU register: source.

fs FPU register: source.

ft FPU register: source (for stores, arithmetic) or destination (for loads).

function Field specifying a function within a particularop operation code.

index CPU register that holds the index address component for address calculations.

MOVC Value infunction field for a conditional move. There is one value for the instruction when
op=COP1, another value for the instruction whenop=SPECIAL.

nd Nullify delay. If set, the branch is Likely, and the delay slot instruction is not executed.

offset Signed offset field used in address calculations.

op Primary operation code (see COP1, COP1X, LWC1, SWC1, LDC1, SDC1, SPECIAL).

rd CPU register: destination.

rs CPU register: source.

rt CPU register: can be either source or destination.

SPECIAL SPECIAL primaryopcode value inop field.

sub Operation subcode field for COP1 register immediate-mode instructions.

tf True/False. The condition from an FP compare that is tested for equality with thetf bit.
62 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

 are

f
ree bits

tance,
 the
Appendix A

Instruction Bit Encodings

A.1 Instruction Encodings and Instruction Classes

Instruction encodings are presented in this section; field names are printed here and throughout the book initalics.

When encoding an instruction, the primaryopcode field is encoded first. Mostopcode values completely specify an
instruction that has animmediate value or offset.

Opcode values that do not specify an instruction instead specify an instruction class. Instructions within a class
further specified by values in other fields. For instance,opcode REGIMM specifies theimmediate instruction class,
which includes conditional branch and trapimmediate instructions.

A.2 Instruction Bit Encoding Tables

This section provides various bit encoding tables for the instructions of the MIPS32 ISA.

Figure A-1shows a sample encoding table and the instructionopcodefield this table encodes. Bits 31..29 of theopcode
field are listed in the leftmost columns of the table. Bits 28..26 of theopcode field are listed along the topmost rows o
the table. Both decimal and binary values are given, with the first three bits designating the row, and the last th
designating the column.

An instruction’s encoding is found at the intersection of a row (bits 31..29) and column (bits 28..26) value. For ins
theopcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Similarly,
opcode value for EX2 is 64 (decimal), or 110100 (binary).
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 63

Appendix A Instruction Bit Encodings
TablesA-2 through A-15 describe the encoding used for the MIPS32 ISA.Table A-1 describes the meaning of the
symbols used in the tables.

Table A-1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

δ
(Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

θ

Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, the partner must notify MIPS Technologies, Inc.
when one of these encodings is used. If no instruction is encoded with this value, executing such
an instruction must cause a Reserved Instruction Exception (SPECIAL2encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which access is not allowed).

σ
Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

ε
Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011 EX1

4 100

5 101

6 110 EX2

7 111

Decimal encoding of
opcode (28..26)

Binary encoding of
opcode (28..26)

Decimal encoding of
opcode (31..29)

Binary encoding of
opcode (31..29)

Figure A-1 Sample Bit Encoding Table
64 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

A.2 Instruction Bit Encoding Tables
φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

Table A-2 MIPS32 Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 SPECIALδ REGIMMδ J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0δ COP1δ COP2θδ COP3θδ BEQL φ BNEL φ BLEZL φ BGTZL φ
3 011 β β β β SPECIAL2δ JALX ε ε *

4 100 LB LH LWL LW LBU LHU LWR β
5 101 SB SH SWL SW β β SWR CACHE

6 110 LL LWC1 LWC2θ PREF β LDC1 LDC2 θ β
7 111 SC SWC1 SWC2θ * β SDC1 SDC2θ β

Table A-3 MIPS32SPECIAL Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SLL MOVCIδ SRL SRA SLLV * SRLV SRAV

1 001 JR JALR MOVZ MOVN SYSCALL BREAK * SYNC

2 010 MFHI MTHI MFLO MTLO β * β β
3 011 MULT MULTU DIV DIVU β β β β
4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 * * SLT SLTU β β β β
6 110 TGE TGEU TLT TLTU TEQ * TNE *

7 111 β * β β β * β β

Table A-4 MIPS32REGIMM Encoding of rt Field

rt bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL φ BGEZL φ * * * *

1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 10 BLTZAL BGEZAL BLTZALL φ BGEZALL φ * * * *

3 11 * * * * * * * *

Table A-5 MIPS32SPECIAL2 Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL θ MSUB MSUBU θ θ
1 001 θ θ θ θ θ θ θ θ
2 010 θ θ θ θ θ θ θ θ
3 011 θ θ θ θ θ θ θ θ
4 100 CLZ CLO θ θ β β θ θ
5 101 θ θ θ θ θ θ θ θ
6 110 θ θ θ θ θ θ θ θ
7 111 θ θ θ θ θ θ θ SDBBPσ

Table A-1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 65

Appendix A Instruction Bit Encodings
Table A-6 MIPS32MOVCI Encoding of tf Bit

tf bit 16

0 1

MOVF MOVT

Table A-7 MIPS32COPz Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFCz β CFCz * MTCz β CTCz *

1 01 BCzδ * * * * * * *

2 10
CO δ

3 11

Table A-8 MIPS32 COPz Encoding of rt Field When rs=BCz

rt bits 16

bit 17 0 1

0 BCzF BCzT

1 BCzFLφ BCzTL φ

Table A-9 MIPS32COP0 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC0 β * * MTC0 β * *

1 01 * * * * * * * *

2 10
CO δ

3 11

Table A-10 MIPS32COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * TLBR TLBWI * * * TLBWR *

1 001 TLBP * * * * * * *

2 010 * * * * * * * *

3 011 ERET * * * * * * DERET σ
4 100 WAIT * * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table A-11 MIPS32COP1 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC1 β CFC1 * MTC1 β CTC1 *

1 01 BC1δ ε ε⊥ * * * * *

2 10 Sδ D δ * * W δ β β *

3 11 * * * * * * * *
66 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

A.2 Instruction Bit Encoding Tables
Table A-12 MIPS32COP1 Encoding of Function Field When rs=S

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 β β β β ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCFδ MOVZ MOVN * β β *

3 011 * * * * ε ε ε ε
4 100 * CVT.D * * CVT.W β β *

5 101 * * * * * * * *

6 110 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE

7 111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

Table A-13 MIPS32COP1 Encoding of Function Field When rs=D

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 β β β β ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCFδ MOVZ MOVN * β β *

3 011 * * * * ε ε ε ε
4 100 CVT.S * * * CVT.W β * *

5 101 * * * * * * * *

6 110 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE

7 111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

Table A-14 MIPS32COP1 Encoding of Function Field When rs=W

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * ε *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table A-15 MIPS32COP1 Encoding of tf Bit When rs=S, D, or PS,Function=MOVCF

tf bit 16

0 1

MOVF.fmt MOVT.fmt
MIPS32™ Architecture For Programmers Volume I, Revision 0.95 67

Appendix A Instruction Bit Encodings
68 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 69

Appendix B

Revision History

Revision Date Description

0.95 March 12, 2001 External review copy of reorganized and updated architecture documentation.

	MIPS32™ Architecture For Programmers Volume�I: Introduction to the MIPS32™ Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	The MIPS Architecture: An Introduction
	2.1� MIPS32 and MIPS64 Overview
	2.1.1� Historical Perspective

	2.2� Architectural Changes Relative to the MIPS I through MIPS V Architectures
	2.2.1� MIPS Instruction Set Architecture (ISA)
	2.2.2� MIPS Privileged Resource Architecture (PRA)
	2.2.3� MIPS Application Specific Extensions (ASEs)
	2.2.4� MIPS User Defined Instructions (UDIs)

	2.3� Architecture Versus Implementation
	2.4� Relationship between the MIPS32 and MIPS64 Architectures
	2.5� Instructions, Sorted by ISA
	2.5.1� List of MIPS32 Instructions
	2.5.2� List of MIPS64 Instructions

	2.6� Pipeline Architecture
	2.6.1� Pipeline Stages and Execution Rates
	2.6.2� Parallel Pipeline
	2.6.3� Superpipeline
	2.6.4� Superscalar Pipeline

	2.7� Load/Store Architecture
	2.8� Programming Model
	2.8.1� CPU Data Formats
	2.8.2� FPU Data Formats
	2.8.3� Coprocessors (CP0-CP3)
	2.8.4� CPU Registers
	2.8.4.1� CPU General-Purpose Registers
	2.8.4.2� CPU Special-Purpose Registers

	2.8.5� FPU Registers
	2.8.6� Byte Ordering and Endianness
	2.8.6.1� Big-Endian Order
	2.8.6.2� Little-Endian Order
	2.8.6.3� MIPS Bit Endianness
	2.8.6.4� Addressing Alignment Constraints
	2.8.6.5� Unaligned Loads and Stores

	2.8.7� Memory Access Types
	2.8.7.1� Uncached Memory Access
	2.8.7.2� Cached Memory Access

	2.8.8� Implementation-Specific Access Types
	2.8.9� Cache Coherence Algorithms and Access Types
	2.8.10� Mixing Access Types

	Application Specific Extensions
	3.1� Description of ASEs
	3.2� List of Application Specific Instructions
	3.2.1� The MIPS16 Application Specific Extension to the MIPS32Architecture
	3.2.2� The MDMX Application Specific Extension to the MIPS64 Architecture
	3.2.3� The MIPS-3D Application Specific Extension to the MIPS64 Architecture
	3.2.4� The SmartMIPS Application Specific Extension to the MIPS32 Architecture

	Overview of the CPU Instruction Set
	4.1� CPU Instructions, Grouped By Function
	4.1.1� CPU Load and Store Instructions
	4.1.1.1� Types of Loads and Stores
	4.1.1.2� Load and Store Access Types
	4.1.1.3� List of CPU Load and Store Instructions
	4.1.1.4� Loads and Stores Used for Atomic Updates
	4.1.1.5� Coprocessor Loads and Stores

	4.1.2� Computational Instructions
	4.1.2.1� ALU Immediate and Three-Operand Instructions
	4.1.2.2� ALU Two-Operand Instructions
	4.1.2.3� Shift Instructions
	4.1.2.4� Multiply and Divide Instructions

	4.1.3� Jump and Branch Instructions
	4.1.3.1� Types of Jump and Branch Instructions Defined by the ISA
	4.1.3.2� Branch Delays and the Branch Delay Slot
	4.1.3.3� Branch and Branch Likely
	4.1.3.4� List of Jump and Branch Instructions

	4.1.4� Miscellaneous Instructions
	4.1.4.1� Instruction Serialization (SYNC)
	4.1.4.2� Exception Instructions
	4.1.4.3� Conditional Move Instructions
	4.1.4.4� Prefetch Instructions
	4.1.4.5� NOP Instructions

	4.1.5� Coprocessor Instructions
	4.1.5.1� What Coprocessors Do
	4.1.5.2� System Control Coprocessor 0 (CP0)
	4.1.5.3� Floating Point Coprocessor 1 (CP1)
	4.1.5.4� Coprocessor Load and Store Instructions

	4.2� CPU Instruction Formats

	Overview of the FPU Instruction Set
	5.1� Binary Compatibility
	5.2� Enabling the Floating Point Coprocessor
	5.3� IEEE Standard 754
	5.4� FPU Data Types
	5.4.1� Floating Point Formats
	5.4.1.1� Normalized and Denormalized Numbers
	5.4.1.2� Reserved Operand Values—Infinity and NaN
	5.4.1.3� Infinity and Beyond
	5.4.1.4� Signalling Non-Number (SNaN)
	5.4.1.5� Quiet Non-Number (QNaN)

	5.5� Floating Point Register Types
	5.5.1� FPRs and Formatted Operand Layout

	5.6� Floating Point Control Registers (FCRs)
	5.6.1� Floating Point Implementation Register (FCCR, CP1 Control Register 0)
	5.6.2� Floating Point Control and Status Register (FCSR, CP1 Control Register 31)
	5.6.3� Floating Point Condition Codes Register (FCCR, CP1 Control Register 25)
	5.6.4� Floating Point Exceptions Register (FEXR, CP1 Control Register 26)
	5.6.5� Floating Point Enables Register (FENR, CP1 Control Register 28)

	5.7� Formats of Values Used in FP Registers
	5.8� FPU Exceptions
	5.8.0.1� Precise Exception Mode
	5.8.1� Exception Conditions
	5.8.1.1� Invalid Operation Exception
	5.8.1.2� Division By Zero Exception
	5.8.1.3� Underflow Exception
	5.8.1.4� Overflow Exception
	5.8.1.5� Inexact Exception
	5.8.1.6� Unimplemented Operation Exception

	5.9� FPU Instructions
	5.9.1� Data Transfer Instructions
	5.9.1.1� Data Alignment in Loads, Stores, and Moves
	5.9.1.2� Addressing Used in Data Transfer Instructions

	5.9.2� Arithmetic Instructions
	5.9.3� Conversion Instructions
	5.9.4� Formatted Operand-Value Move Instructions
	5.9.5� Conditional Branch Instructions
	5.9.6� Miscellaneous Instructions

	5.10� Valid Operands for FPU Instructions
	5.11� FPU Instruction Formats
	5.11.1� Implementation Note

	Instruction Bit Encodings
	A.1� Instruction Encodings and Instruction Classes
	A.2� Instruction Bit Encoding Tables

	Revision History

