MII—P S

TECHNOLOGIES

MIPS32™ Architecture For Programmers
Volume I: Introduction to the MIPS32™
Architecture

Document Number: MD00082
Revision 0.95
March 12, 2001

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2001 MIPS Technologies, Inc. All rights reserved.
Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies™). Any
copying, modifyingor use of this information (in whole or in part) which is not expressly permitted in writing by MIPS
Technologies or a contractually-authorized third party is strictly prohibited. Ata minimum, this information is protected
under unfair competition laws and the expression of the information contained herein is protected under federal
copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in
this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
the application or use of this information. Any license under patent rights or any other intellectual property rights owned
by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third
party in a separate license agreement between the parties.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or any contractually-authorized third party.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies, Inc., and
R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS |, MIPS I, MIPS 1lI, MIPS IV, MIPS V, MDMX,

SmartMIPS, 4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV

and MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

Table of Contents

Chapter 1 ADOUL THIS BOOKceiiiiiiiiiiee ettt e e e o444 —— £ £t 2222224111 nb bt be e 1.
1.1 Typographical Conventions
0 R 1 = [= T PP OPPPRPPPPPPRPRN
L1.1.2 BOI TEXE .eeeeiiiiiiee ettt ettt e e .
R I 01U 1= g I =) PP PR OUP PRSPPI 1.
1.2 UNPREDICTABLE and UNDEFINED
1.2.1 UNPREDICTABLE.......coiitiiiiii ettt
1.2.2 UNDERINED.......coiitiie ittt ettt e sttt e bt e e s st et e 41t et 42t st s £ 45444 b et e e b b e e 2
1.3 Special Symbols in PSEUAOCOTE NOTALION...........uuiiiiiiiiiee i+ s——— et e 2122
R o Y To] (=N [0 (o T4 4 F= X o o RO PP PP PPPPPRPOPPI 5.
Chapter 2 The MIPS Architecture: AN INIFOQUCTIONeeiiiiieiiii e e e e s smmmmeem e o1 nne b eee e 7.
2.1 MIPS32 aNd MIPSB4 OVEIVIEWcceiieeiiiiiieitiiieeeteaaeeee e s aaetttbeeeeeetaaaeeasaa s ntebbeeeeaaeaaeeessaaaaaseasaannnsssbssaeeeeaaaeens 7
2.1.1 HiStOriCAl PEISPECLIVEciiiiiiie ittt e ettt e e e sk mmmmmneesemmm b e e e e s ennneeeeeennn il
2.2 Architectural Changes Relative to the MIPS | through MIPS V ArchiteCtures............ccoccvvveiiiieeeesns o Lo
2.2.1 MIPS Instruction Set ArchiteCture (ISA).......oo it
2.2.2 MIPS Privileged Resource Architecture (PRA)ooviiiiiiiiieiiiet et
2.2.3 MIPS Application Specific EXIENSIONS (ASES)ccciiuuiiiieiiiiiee ittt b« s
2.2.4 MIPS User Defined INStrUCIONS (UDIS).......cocueiiiiiiiiiiee ettt e e e s emmmmmmmmmeeees e e e
2.3 Architecture Versus IMpPIemMENTALIONiiii it e s e s e e e e snbe e e s enees 9
2.4 Relationship between the MIPS32 and MIPS64 ArchiteCIUIESc.uviiiiiiiiiie e me e e ecme e 9
2.5 INSTIUCLIONS, SOMEA DY IS A ..ottt e e e e e e 4 e e ———— et 2 22222122 1annnne 9.
2.5.1 LiSt Of MIPS32 INSIIUCLIONS.......cciiiiiiiiieieeet ettt e e ettt e e e e e e e e e e e e e s mmnne s beeeeeeeaaeeeas
2.5.2 LiSt Of MIPSB4 INSIIUCLIONS......ciiiiiiiiieiiee ettt e e ettt e e e e e e e e e e s s e e s mmnne s beeeeeeaaaeeeas
2.6 PiIPeliNg ANCIITECIUIE. . ..ot ettt e et e e e et e e e e et e e eeeamme e e e e et e e s e aabbe e e e e ennbreeesennes
2.6.1 Pipeline Stages and Execution Rates
2.6.2 Parallel PIPEIINEcooi e
2.6.3 SUPEIPIPEIINE ..t ab e
2.6.4 SUPEISCAlAr PIPEIINE ...ttt ——— 222
A A o=V 53 (o] I AN (o] T (=T ox (1 (= TR
2.8 Programming Model
2.8.1 CPU DAt@ FOMMALScoeiiiiiiiiiiiiiiit ettt et et e et s s s £ £ 12222222222 e e
2.8.2 FPU DAt FOIMMIALS......eetietitituitiiiaa e et e e e e e e e e e et e et et eeeeee et tte b et e b e o s e oo 1222 e+ om—— 111122222t e e e e e
2.8.3 Coprocessors (CP0-CP3)
2.8.4 CPU REQISIEIS ... utiiiieiiiteite ettt e ettt e sttt et e e st bttt e e s ek be e et e e aa b bttt e e s st e s eemmmmmeeeaamns sk bbeeeesannnreeeean 14
2.8.5 FPU REQISIEIS ... eeeiiieiiteete ettt ettt e ottt e e sk bttt e s e sttt et e e o nb e s eammmmeeeaamns s s be et e e s annreeeean 16
2.8.6 Byte Ordering and ENQIANNESS.........coiiiiiiiiiiiiiiiiee ettt ettt eemme e s eeesmeeesssbeeee e 17
2.8.7 MEMOIY ACCESS Ty PO . ittt ettt oo e oo e e e e e e e e e e e et e et ettt e et aeeebebs bt et et mmmmmmmmmmmmmms s 11 e e e e e e e e e s 20
2.8.8 Implementation-SPECIfiC ACCESS TYPES. ... ueieiieiiieiee e e ettt e e e e e e s e e e e e e e e e s mmmmeeeeeemnn e e e e s 21
2.8.9 Cache Coherence Algorithms and ACCESS TYPESciicuuriiiiiiiieiee e e ieiiietie e e e e e e e e e s s s seebee e s smmmmmmmmmmnee 21
2.8.10 MiXiNG ACCESS TYPES .. iiiiiitttttteeetaaae e e e e e aaatteteeeeeeaaaeaseaaaasasbaeeeaeaaaaeeasaaanntssseees Sommmmmmmmmmn st sseeeeeeeaeens 21
Chapter 3 Application SPECIfiC EXIENSIONS......uuuuiiiiiieee i e e e e e e s s s s e e e ee e e e s s s s eeesssnmmnneeeseeereeaeeesssannnnsnes 23
0 A I T3] 1T T I) AN PSR 23
3.2 List of Application SPeCifiC INSIIUCHIONSuuuiiiiiiiieii e e e e e s s re e e e e e s e e snnneneeees 24
3.2.1 The MIPS16 Application Specific Extension to the MIPS32Architecture.........cccccceeevevvciviieenneeeeeenn, 24........
3.2.2 The MDMX Application Specific Extension to the MIPS64 ArchiteCtureccoccvvvveveeeeeeeeen s 24........
3.2.3 The MIPS-3D Application Specific Extension to the MIPS64 Architecturecccccccvveeevvviiicivinnnen, 24.........
3.2.4 The SmartMIPS Application Specific Extension to the MIPS32 Architecture............ccccccvvveevveneeeenn, 24.........
Chapter 4 Overview Of the CPU INSIFUCLION SEL........uiiiiiiiiiiiiiii et e bbb e e 25

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 i

4.1 CPU Instructions, Grouped BY FUNCHONcooiiiiiiiiiiiiiie ettt e mmmmeeee e 25

4.1.1 CPU Load and Store INSIIUCTIONScccciiiriiieeiiiiiie ettt e st e s s mmeeenemmmmeee e e 25
4.1.2 Computational INSTIUCTIONS ...ttt e e e e e e s e e bbb emmmmmmmmmmen b e e eeeeeeaeeeas 27
4.1.3 Jump and BranCh INSIIUCHIONS.coiiiiiiiiie ettt e e e emeeeeeeeeeean e e e e nnnnae 30
4.1.4 Miscellaneous Instructions
4.1.5 COProCeSSOr INSIIUCTIONS.ceiiiiiriiieei ittt e e
4.2 CPU INSIIUCLION FOIMALSoeiiiiiiiie ittt e st e e s e e e s emme e e e e e emme e e e e e nrre e e e e annres
Chapter 5 Overview Of the FPU INSIIUCLION SELuiiiiiiiiiiii ittt rmmmeeee e s ee e 39
5.1 Binary COMPALiDIlITY.......coooiiiiiiieiiiii etk e e e e e e e e e e nnr s 39
5.2 Enabling the FIoating POINt COPIOCESSO........uutiiiiiiiieeee ittt e e ettt e e ettt e et e e e e bt e e e e eesmeeeeseenbeeeeeannnnes 39
5.3 IEEE SANUANT 754eei ittt ettt ettt ekt e e s ettt e s st e e e sa bt e e sa bt emmmeeammeeamns sh b e e e snbeeesnbeeesnneeead 40
5.4 FPU DAA TYPES ..o oiiiiiiitiitieet ettt e e e e et e ettt e e e e a4 e st e e e e ettt e e e s saamenreeeeeesen e rrreneraeeeeene s 40
5.4.1 Floating POINt FOMMALS.ueiiiiiiiiiie ittt e e s st e e e e bt me e e e eesmmeee e e e e e nbeeeeeennes 40
5.5 Floating POINt REGISTEN TYPESiiiiiiiiiiieiee ittt ettt ettt e et e e e st be e e e e s st e e e eseameeeeesbeeeeessbbeeeeeaanes a4
5.5.1 FPRs and Formatted Operand LAYOUL.............eeieiiiriiieiiiiieiie ettt e s snnne e e s s annnee e 44
5.6 Floating Point Control REJISIEIS (FCRS)cciitiiiieiiiiiiee ettt ettt e et emmm e e e e semmme e e e s 44
5.6.1 Floating Point Implementation Register (FCCR, CP1 Control Register 0)........ccccoecvvvveevviieveennnenn A
5.6.2 Floating Point Control and Status Register (FCSR, CP1 Control Register 31).........ccccoevcvvvveennc 45
5.6.3 Floating Point Condition Codes Register (FCCR, CP1 Control Register 25)ccccccevvivieeeeiiinnenn. 48...........
5.6.4 Floating Point Exceptions Register (FEXR, CP1 Control Register 26)ccoccvvveiniiiireenniinee e e 48
5.6.5 Floating Point Enables Register (FENR, CP1 Control Register 28)ccccoeviiiiieiiiiiiiee e eeeans 49.....
5.7 Formats of Values Used in FP REQISIENScooiiiiiiiiiiiiiie et s s 12100 40
RS e e U I (ot =T o 1o £ 1T PP PP UPPPPTPPPPPPR 51
5.8.1 Exception Conditions i e e s D2
5.9 FPU INSIIUCTIONSitteeeee ittt ettt ekttt e oo e a et e e e ottt e e o4kt e et e o442t £ ¢ o £ 44+ 41181524241 b b e e e e e en 55
5.9.1 Data Transfer INSIIUCHIONS.oiiiiiiiiie ittt e s anr e e e s s snr e e e s anbb e e e e e anees 55
5.9.2 ArithMEetiC INSIIUCLIONSueiiiiiiiiie ettt e e e e e e ettt e e e e e s cmmmmmmmmmnen e e et e e aeeeeaeeannn 56
5.9.3 CONVEISION INSIIUCTIONSeiiiiiiiiiiie ittt ettt e st e e st e e s e b e e eeeaeeamneneeeeensbeeeeeannnes 56
5.9.4 Formatted Operand-Value Move INSIIUCTIONSc.vviiiiiiiiiieeeiiieee ettt e e e 57
5.9.5 Conditional BranCh INSIIUCHIONSceiiiiiiiiiiieiiiii ettt c—— e 58
5.9.6 MiISCEllANEOUS INSIIUCTIONS.ciuitiiiieiitiiie ettt ettt et e e st e e e e anne e e e s e ansbr e e e e annneeeas 59
5.10 Valid Operands for FPU INSIIUCHIONS..........uiiiiiiiiiiee ettt ettt e e e e e s senne e e e e e s sanneeeeeans h9
5.11 FPU INSLIUCHON FOMIALSeittiiiieiitiieee ettt ettt ettt e sttt e e skttt e e e s st bttt e e s bbae e e e s amnneeeeesanbnbeeeeannnneeens 60
5.11.1 IMPIEMENTALION NOTEooiiiiiiiii ittt e e sttt e e s s b s mmmmneeenmmn s se et e e snnneeees 6l
AppendiX A INStruction Bit ENCOGINGSuuuuiiiiiiiiiiie e e e s s e e e e e e e e s e s e s —— 111111ttt n e e e s
A.1 Instruction Encodings and Instruction Classes
A.2 Instruction Bit ENCOAING TADIES........cuiiiiiiiiiiii e s e e e e e e e e e e e e s s e rnereeeaaees
APPENIX B REVISION HISTOIY ...ttt ettt e e e e e e e et e« st £+ £+ 412ttt beeeeeeaeeeee] 69

ii MIPS32™ Architecture For Programmers Volume I, Revision 0.95

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 3-1:
Figure 3-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 5-13:
Figure 5-14:
Figure 5-15:
Figure 5-16:

Figure A-1:

Relationship between the MIPS32 and MIPS64 ArChiteCtUIES.uuiiiiiiiiiiiiiiiiiieeeee e eeeee e e eeeeeeee e 9
One-Deep Single-Completion Instruction Pipeline
Four-Deep Single-Completion PIipeliNeu e mmne e e
FoUur-Deep SUPEIPIPEINEGcooiieeee ettt e e e e £+ 441 b bt e e e e e e eaeas
Four-Way SUperscalar PIPEIINE et mmmeeeeeeemnnn et eee s
L8 e U =T 1S3 (=] £ RPNt
L I =T 1] (=T PP
=TT B =t o L= T =Y (=3 @ 10 1= 4T Vo USSR
Little-ENdian BYte OFUEIING.......ccciiiiieieeeeeeeeeee s e s s s s e e e e e e e e e e e e et et e e et et et memememem—————— e seaeseaeeaaaaaaeeeees

: Big-Endian Data in DoubleWord FOIMALoooiiiiiiiiiiiiiiiiiice s s e e e e e e e e e e e e e e s eeeemnma e e e e e e aaaaaeas

: Little-Endian Data in Doubleword FOrMALccuuiiiiiiiiiieeee e e e

: Big-Endian Misaligned Word AQAreSSINGuuuuriuimiuiiiiiiiiiieie e e e e e eeeeeee e et eeeeeeeaetets s eememmmmmmmmmm e e e eaeaeaees

. Little-Endian Misaligned Word AdAreSSINgGcocooieiiiiiiieeeeeeeee s e eeeresesnaeeens s e s e e e e e e eaaaas
MIPS ISAS BNA ASESottt e e oottt et e e e e e a4 e e s e e e e e mmeeebeeeeeeeaaeeeeaeaannbnanees
User-Mode MIPS ISAS and OPLtioNal ASES..........uuiiiiiiiiiiiiiiiie ittt s e e e
Immediate (I-Type) CPU INStruCtion FOIMAL.............uuiiiiiiiiiiiiiiiiiiiieee e seemmmmmmmm e
Jump (J-Type) CPU INSIIUCLION FOIMAL.........uuiiiiiiiiiieieii et e mmmmmmeens et e e e e e e e e
Register (R-Type) CPU INStruction FOrMaAt..........ccuuviiiiiiiiiieeiieiiiiiieeeee e

Single-Precisions Floating Point FOrmMat (S).........uuuuuiiiiiiiiiiiiiie e s e e nnnnn D
Double-Precisions Floating Point FOrmMat (D).........uuuuuiuiiiiiiiiiiiii e 41
AVAY Lo o I D= Te I o T T A o g = U (A) U 43
L L =T o Y (= T 1 = SRR 44
FCSR REQISIEr FOIMALo e e s e e e e e e e e e e e e et e e e e e e e s ——— 11t 2t 2 e s vesesnrnnnnnd 46

FCCR ReEQISIEr FOMMAL.......iiiiiiiiiiieiiiieie e s s e e e et e e e e e e et et et ettt et aeae e e smmmmmmmmmmmmmms e e eeeeeeaeeesssssnnrnnnnsd 48
FEXR REQISIEr FOIMMIAL.......ccii it s s s s s e s e e e e e e e e e e e te e et et e eeeeaeseete b s e aaaeeeseaeaaaaeeereresssessnnrnrnned 48
L LN | =T o [(=] gl o 1 = L PP 49
Effect of FPU Operations on the Format of Values Held in FPRS............ccccoiiiiii e D1

I-Type (Immediate) FPU INSruction FOrMALuuiiiiiiiiiiiiiiieeee e e e e
R-Type (Register) FPU INSIrUCtION FOIMAL...........oouiiiiiiiiiiiiee ettt meeeeeeeeseesme e e e
Register-Immediate FPU INStrUCtiON FOMMAL...........uuuiuiiiiiiiiiiie et e memmmmmmmmmn s e e e e e e e
Condition Code, Immediate FPU INStruCtion FOIMALooiiiiiiiiiiiiiiiiiiieeeee e cmeeeeeeeoman e
Formatted FPU Compare INStruCtioN FOIMAL...........ccuuiiiiiiiiiiieee ettt rmme e e e eessee e e e e e
FP RegisterMove, Conditional INStruction FOrMALt............uiiiiiiiiiiiii e e ee e e e memmmmme e e e
Condition Code, Register Integer FPU Instruction Format
Sample Bit ENCOAING TaDIE..... ... —— 111111411 e e e 64

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 iii

List of Tables

Table 1-1:
Table 2-1:
Table 2-2:
Table 2-3:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 4-7:
Table 4-8:
Table 4-9:

Table 4-10:
Table 4-11:
Table 4-12:
Table 4-13:
Table 4-14:
Table 4-15:
Table 4-16:
Table 4-17:
Table 4-18:
Table 4-19:
Table 4-20:
Table 4-21:
Table 4-22:
Table 4-23:

Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 5-6:
Table 5-7:
Table 5-8:
Table 5-9:

Table 5-10:
Table 5-11:
Table 5-12:
Table 5-13:
Table 5-14:
Table 5-15:
Table 5-16:
Table 5-17:
Table 5-18:
Table 5-19:
Table 5-20:
Table 5-21:
Table 5-22:
Table 5-23:

Symbols Used in Instruction Operation StatemMeENtSuuuiiiiiiiiiiiiii e eeeeee e e 3
MIPS32 INSIFUCHIONS ...ceeiiiieiiiiiiiete et e e e e
MIPSB4 INSITUCHIONS ...ceeiiiiiiiiiiiiiiite ettt e e e e
Unaligned Load and Store Instructions
Load and Store Operations Using Register + Offset Addressing Mode...........ccccceeiiiiiiiiiiiees e
Aligned CPU Load/Store INSIIUCLIONSccoiiiiiiiii e s e e e e e e eeeeeeeearan e as
Unaligned CPU Load and Store INSIFUCHIONSeiiiiiiii i
Atomic Update CPU Load and Store INSIIUCIONS...........uuuiiiiiiiiieeeee i e e e e e e e e
Coprocessor Load and StOre INSTIUCTIONSiiiiiiaiiiiiiiitie ettt e e e s meneeeeeeeasaaan s e e e nnerebnees
ALU Instructions With an Immediate OPerandoouuiiiiiiiiiia e e e e
Three-Operand ALU INSITUCHIONSooiiiiiiiiiiiiii ittt e e et meeeeeeeeeaaaa e e e s e e nnebeenees
Three-Operand ALU INSITUCHIONSooiiiiiiiiiiiiii ittt e e et meeeeeeeeeaaaa e e e s e e nnebeenees
SHIFE INSIFUCTIONS ...ttt e e e e e e o e h bbb ettt eeeeeaaaeeaas s s nbabbebeeeeeeeaeessaaannnnnes
MUILIPIY/DIVIAE INSIIUCLIONSiiiiiiieiiee ettt e e e e e et mmmmmmmn s s bbbt e e e e e e e e e e e s
Unconditional Jump Within a 256 Megabyte Region ... ceemmome
PC-Relative Conditional Branch Instructions Comparing Two Registers
PC-Relative Conditional Branch Instructions Comparing With Zero
Deprecated Branch LiKely INSITUCHIONSuiiiiiiiiiiiiiieiece e ecme e e e e e e
SerialiZation INSTIUCTIONeeiiiiie ettt e e e e e e bbb eee e e mmee e e e e e e s bbbbbbeeeeaaaaeeas
System Call and Breakpoint INSTIUCLIONSuiiiiiiiiiiiaa e oo e e e e
Trap-on-Condition Instructions Comparing TWO ReQISIEISuuuiiiiiiiiiiiiiiiiiiee e eereeeeeeeeeae
Trap-on-Condition Instructions Comparing an Immediate Value
CPU Conditional MOVE INSITUCHIONScooiiiiiiiiiiiiiieet ettt e e s 41 e e

NOP INSTIUCTIONS ...ceeieiiitieee ettt ettt e e ekt e e e ettt e e e aa s et e e mmmmmmmmmmnn £+ e ket e e e e nnre e e e e ennnes 35
Coprocessor Definition and Use in the MIPS ArchiteCture...............uveeiiiiiiiiiiiiiie e 35

CPU INStruction FOrmMat FIEIASoooi it e e e e e e e e e e e e e 37
Parameters of Floating Point Data Types... errrer e e e e e teeeaeeeaeeeeess eo— 11111111112 G0
Value of Single or Double Floating Point DataType Encodlng 41
Value Supplied When a New Quiet NaN IS Created..........ooooiiiiiiiiiiiiieeee et s 1 43
FIR Register Field DESCHPLIONS ..ottt e e e e e e eeeeaeeeeeesm s snbbbbreeeaeaaeeeaas 45
FCSR Register Field DESCIIPLIONS......cciii ittt ettt e e e e e s e ¢ —— 1111t bbb e e 46
Cause, Enable, and Flag Bit Definitions AT
Rounding Mode DefiNItIONSuuuiiiiiiiiiii i s e e e e e n e e e aeeas a7
FCCR Register Field DeSCIPLIONSccuiiiiiiiiiiiiiiiiiiiie ettt e e e e e eememnnmmmmmms s eeeeeeee e A
FEXR Register Field DeSCHPUONSccoiiiiiiiiiiiiiiieeeie ettt sievieeeeeeee e e e e e e e e snnnnnnneeeeeee e A9

FENR Register Field DeSCIPLIONSuuuiiiiiiiiieieeiiiiiiiieeee e e e e e s smmmmmmmeeseeessseeeeeeeeeeeeee e A0

Default Result for IEEE Exceptions Not Trapped Preciselyccccovviieeeeeeeenn.
FPU Data Transfer INStrUCHIONSeeiiiiiiiiiiiiiiieiieeee e
FPU Loads and Stores Using Register+Offset Address Mode
FPU Move To and From INSIIUCTIONSoiiiiiiiiiieiie ettt e mmmmms et e e e e e
FPU IEEE ArithmetiC OPEIALIONSuieiiiiiiiieeeie ittt et e et e e e e e e s s mmmmeeeemennn e e e e e e s nnbneeeee
FPU Conversion Operations Using the FCSR Rounding Mode..............cccviiiiiiiiniiiiiieeee s sl
FPU Conversion Operations Using a Directed Rounding Mode.............cccuiiiiiiiiiiiiiiiiiieeee e 57
FPU Formatted Operand Move Instructions
FPU Conditional Move on True/False INSIIUCTIONSuuueiiiiiiiaaiiiiiiiie et s 22211
FPU Conditional Move on Zero/NONZero INSIUCTIONSuiiiiiiieiiiiiiiiiiiiiee e e e 58
FPU Conditional BranCh INSIIUCHIONS.......ccciiiiiiiiiiiiet ettt e e e e e e e e e e e e e nneeeeee 58
Deprecated FPU Conditional Branch LikKely INStrUCHIONScooiiiiiiiiiiiiiiiieieee e e e 58
CPU Conditional Move on FPU True/False INSIIUCLIONSuviiiiiiiiiieei e 59

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

Table 5-24:
Table 5-25:
Table 5-26:

Table A-1:
Table A-2:
Table A-3:
Table A-4:
Table A-5:
Table A-6:
Table A-7:
Table A-8:
Table A-9:

Table A-10:
Table A-11:
Table A-12:
Table A-13:
Table A-14:
Table A-15:

FPU Operand Format Field (fmt) ENCOOINGuuviiiiiiiiiiiiiiiiiiieicecee e s 20 DO
Valid Formats for FPU Operations

FPU Instruction FOrmMat FIRIASueiiiiiiiii e e e e e e
Symbols Used in the Instruction Encoding TabIes..........ooovviiiiiiiiiiiiiiccire e e 64
MIPS32 Encoding of the Opcode Feldcoo et 65
MIPS32 SPECIAL Opcode Encoding of Function Fieldoooiiiiiiie e 65
MIPS32 REGIMM ENCOding Of It FIEIdceevviiiiiiiieiiieee e e 65
MIPS32 SPECIAL2 Encoding of Function Field..................ouiiiiiiiiieeeeeeeee, SR o 1o
MIPS32 MOVCI ENCOING OF tf Bit....eceiiiieiiiiiiiiiiie st st 11151 66
MIPS32 COPZz ENcoding Of 1S FI@IUuuueeiii i e e mmmm e e e e e e e e e e e e e e 66
MIPS32 COPz Encoding of rt Field WHhen rS=BCZcooveeeeeeeeeirs s e e e e e e e e e e e eeeeeeeeaeaeannens 66
MIPS32 COPO ENCOAING Of IS FIEIU......eueeieiei i e e mmmmmmmmmmme e e e e e e e e e e aeae e 66

MIPS32 COPO Encoding of Function Field When rs=CO............oooiviiiiiiiiiiiiiiiiiieis e e 66

MIPS32 COP1 ENcoding Of IS FIEld.........coeuiiiiiiiiiiiiiiiis ettt eeeeeeeeees e e e s e e eeeeeeannnnens 66

MIPS32 COP1 Encoding of Function Field When rS=S ... 67

MIPS32 COP1 Encoding of Function Field When rs=D...........ccoooiiiiiiiiiiee s e 67

MIPS32 COP1 Encoding of Function Field When rS=W ... e 67

MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, FUNction=MOVCFccccccccviviiiiiiininaa 67......

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 Y

vi

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

Chapter 1

About This Book

The MIPS32™ Architecture For Programmers Volume | comes as a multi-volume set.

» Volume | describes conventions used throughout the document set, and provides an introduction to the MIPS32™
Architecture

» Volume |l provides detailed descriptions of each instruction in the MIPS32™ instruction set

* Volume 11l describes the MIPS32™ Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS32™ processor implementation

* \olume IV-a describes the MIPS16™ Application-Specific Extension to the MIPS32™ Architecture

* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32™ Architecture and is not
applicable to the MIPS32™ document set

* Volume IV-c describes the MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture and is not
applicable to the MIPS32™ document set

* \olume IV-d describes the SmartMIPS™ Application-Specific Extension to the MIPS32™ Architecture

1.1 Typographical Conventions

This section describes the usetalfic, bold andcourier fonts in this book.

1.1.1 Iltalic Text
* is used foemphasis

* is used fobits, fields registers that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and vditmating point instruction formatsuch ass, D, andPS

* is used for the memory access types, sudaesedanduncached

1.1.2 Bold Text
 represents a term that is beuhefined

* is used fobits andfields that are important from a hardware perspective (for instaggister bits, which are not
programmable but accessible only to hardware)

* is used for ranges of numbers; the range is indicated by an ellipsis. For inStdnndjcates numbers 5 through 1
* is used to emphasiz¢éNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 1

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

The termdUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain caséNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never callldDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can caud®lPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If aresultis generated,
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

Implementations of operations generatiiyPREDICTABLE results must not depend on any data source (memory
or internal state) which is inaccessible in the current processor mode

UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which is
inaccessible in the current processor mode. For exatdNIBREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another process

UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instrudh@EFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer coddiNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are Tiatdd i1

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

1.3 Special Symbols in Pseudocode Notation

Table 1-1 Symbols Used in Instruction Operation Statements

binary
efix is

Symbol Meaning
- Assignment
=% Tests for equality and inequality
Il Bit string concatenation
xY A y-bit string formed by copies of the single-bit value
A constant valua in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the
b#n value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" pr
omitted, the default base is 10.
X Selection of bitg/ throughz of bit stringx. Little-endian bit notation (rightmost bit is 0) is usedyli less than
y..Z z, this expression is an empty (zero length) bit string.
+, - 2's complement or floating point arithmetic: addition, subtraction
0 x 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwise logical OR
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPRI[X] CPU general-purpose registerThe content o6PR[0] is always zero.
FPR[x] Floating Point operand register
FCC[CC] Floating Point condition code CECCJ0] has the same value @OC[1].
FPR[X] Floating Point (Coprocessor unit 1), general register
CPRJ[z,x,s] Coprocessor unit, general registex, selects
CCRJ[z,X] Coprocessor unit, control registek
COCJz] Coprocessor unit condition signal
Xlat[x] Translation of the MIPS16 GPR numbento the corresponding 32-bit GPR number
Endian mode as configured at chip reset.(Gttle-Endian, 1- Big-Endian). Specifies the endianness of t
BigEndianMem memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the end
of Kernel and Supervisor mode execution.

ne
lanness

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

Chapter 1 About This Book

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
The endianness for load and store instructions (Ottle-Endian, 1 Big-Endian). In User mode, this
BigEndianCPU endianness may be switched by settingRifihit in the Statusregister. Thus, BigEndianCPU may be comput

as (BigendianMem XOR ReverseEndian).

ed

ReverseEndian

Signal to reverse the endianness of load and store instructions. This feature is available in User mode g
is implemented by setting tHREDbit of the Statusregister. Thus, ReverseEndian may be computed asg SR
User mode).

nly, and

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-wiritiis set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other ¢
operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception
instructions.

PU
return

This occurs as a prefix @perationdescription lines and functions as a label. It indicates the instruction {
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the curre
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to
label ofl. Sometimes effects of an instruction appear to occur either earlier or later — that is, during th
instruction time of another instruction. When this happens, the instruction operation is written in sections |
with the instruction time, relative to the current instructioim which the effect of that pseudocode appears
occur. For example, an instruction may have a result that is not available until after the next instruction. S
instruction has the portion of the instruction operation description that writes the result register in a se
labeledl +1.

The effect of pseudocode statements for the current instruction labellexppears to occur “at the same timg
as the effect of pseudocode statements labldiecthe following instruction. Within one pseudocode sequen
the effects of the statements take place in order. However, between sequences of statements for diffe
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a f
order of evaluation between such sections.

ime
nt

A time
e
abeled
to

uch an
tion

ce,
ent
articular

PC

TheProgram Countewralue. During the instruction time of an instruction, this is the address of the instru
word. The address of the instruction that occurs during the next instruction time is determined by assig
value toPC during an instruction time. If no value is assigneB@during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16 inst|
or 4 before the next instruction time. A taken branch assigns the target addresP@dheng the instruction
time of the instruction in the branch delay slot.

tion
ning a

uction)

PABITS

The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 p
address bits were implemented, the size of the physical address space w6l '5e=22%6 bytes.

hysical

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 33
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-b|
in which 64-bit data types are stored in any FPR.

In MIPS32 implementation§;P32RegistersModes always a 0. MIPS64 implementations have a compatibi
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a c3
FP32RegisterModes computed from the FR bit in thetatusregister. If this bit is a 0, the processor operat
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value oFP32RegistersModds computed from the FR bit in ti8tatusregister.

» 32-bit
it FPRs

ity
1se
es

InstructioninBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a
jump. This condition reflects thdyynamicstate of the instruction, not tsé&tic state. That is, the value is fals|
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
executed in the delay slot of a branch or jump.

pranch or
e
is not

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the 3
parameter as an exception-specific argument). Control does not return from this pseudocode function

rgument
- the

exception is signaled at the point of the call.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

1.4 For More Information

1.4 For More Information
Various MIPS RISC processor manuals and additional information about MIPS products can be found atthe MIPS URL.:
http://www.mips.com
Comments or questions on the MIPS32™ Architecture or this document should be directed to
Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 5

Chapter 1 About This Book

6 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

Chapter 2

The MIPS Architecture: An Introduction

2.1 MIPS32 and MIPS64 Overview

2.1.1 Historical Perspective

The MIPS® Instruction Set Architecture (ISA) has evolved over time from the original MIPS I™ |SA, through the MIPS

V™ |SA, to the current MIPS32™ and MIPS64™ Architectures. As the ISA evolved, all extensions have been backward
compatible with previous versions of the ISA. In the MIPS 1lI™ level of the ISA, 64-bit integers and addresses were
added to the instruction set. The MIPS IV™ and MIPS V™ levels of the ISA added improved floating point operations,

as well as a set of instructions intended to improve the efficiency of generated code and of data movement. Because of
the strict backward-compatible requirement of the ISA, such changes were unavailable to 32-bit implementations of the
ISA which were, by definition, MIPS I™ or MIPS II™ implementations.

While the user-mode ISA was always backward compatible, the privileged environment was allowed to change on a
per-implementation basis. As a result, the R3000® privileged environment was different from the R4000® privileged
environment, and subsequent implementations, while similar to the R4000 privileged environment, included subtle
differences. Because the privileged environment was never part of the MIPS ISA, an implementation had the flexibility
to make changes to suit that particular implementation. Unfortunately, this required kernel software changes to every
operating system or kernel environment on which that implementation was intended to run.

Many of the original MIPS implementations were targeted at computer-like applications such as workstations and
servers. In recent years MIPS implementations have had significant success in embedded applications. Today, most of
the MIPS parts that are shipped go into some sort of embedded application. Such applications tend to have different
trade-offs than computer-like applications including a focus on cost of implementation, and performance as a function
of cost and power.

The MIPS32 and MIPS64 Architectures are intended to address the need for a high-performance but cost-sensitive MIPS
instruction set. The MIPS32 Architecture is based on the MIPS Il ISA, adding selected instructions from MIPS 111, MIPS

IV, and MIPS V to improve the efficiency of generated code and of data movement. The MIPS64 Architecture is based
on the MIPS V ISA and is backward compatible with the MIPS32 Architecture. Both the MIPS32 and MIPS64
Architectures bring the privileged environment into the Architecture definition to address the needs of operating systems
and other kernel software. Both also include provision for adding MIPS Application Specific Extensions (ASEs), User
Defined Instructions (UDIs), and custom coprocessors to address the specific needs of particular markets.

MIPS32 and MIPS64 Architectures provides a substantial cost/performance advantage over microprocessor
implementations based on traditional architectures. This advantage is a result of improvements made in several
contiguous disciplines: VLSI process technology, CPU organization, system-level architecture, and operating system
and compiler design.

2.2 Architectural Changes Relative to the MIPS | through MIPS V Architectures

In addition to the MIPS32 Architecture described in this document set, the following changes were made to the
architecture relative to the earlier MIPS RISC Architecture Specification, which describes the MIPS | through MIPS V
Architectures.

e The MIPS IV ISA added a restriction to the load and store instructions which have natural alignment requirements
(all but load and store byte and load and store left and right) in which the base register used by the instruction must

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 7

Chapter 2 The MIPS Architecture: An Introduction

also be naturally aligned (the restriction expressed in the MIPS RISC Architecture Specification is that the offset be
aligned, but the implication is that the base register is also aligned, and this is more consistent with the indexed
load/store instructions which have no offset field). The restriction that the base register be naturally-aligned is
eliminated by the MIPS32 Architecture, leaving the restriction that the effective address be naturally-aligned.

» Early MIPS implementations required two instructions separating a mflo or mfhi from the next integer multiply or
divide operation. This hazard was eliminated in the MIPS IV ISA, although the MIPS RISC Architecture
Specification does not clearly explain this fact. The MIPS32 Architecture explicitly eliminates this hazard and
requires that the hi and lo registers be fully interlocked in hardware for all integer multiply and divide instructions
(including, but not limited to, the madd, maddu, msub, msubu, and mul instructions introduced in this specification).

» The Implementation and Programming Notes included in the instruction descriptions for the madd, maddu, msub,
msubu, and mul instructions should also be applied to all integer multiply and divide instructions in the MIPS RISC
Architecture Specification.

2.2.1 MIPS Instruction Set Architecture (ISA)

The MIPS32 and MIPS64 Instruction Set Architectures define a compatible family of 32-bit and 64-bit instructions
within the framework of the overall MIPS32 and MIPS64 Architectures. Included in the ISA are all instructions, both
privileged and unprivileged, by which the programmer interfaces with the processor. The ISA guarantees object code
compatibility for unprivileged and, often, privileged programs executing on any MIPS32 or MIPS64 processor; all
instructions in the MIPS64 ISA are backward compatible with those instructions in the MIPS32 ISA. Using conditional

compilation or assembly language macros, it is often possible to write privileged programs that run on both MIPS32 and
MIPS64 implementations.

2.2.2 MIPS Privileged Resource Architecture (PRA)

The MIPS32 and MIPS64 Privileged Resource Architecture defines a set of environments and capabilities on which the
ISA operates. The effects of some components of the PRA are visible to unprivileged programs; for instance, the virtual
memory layout. Many other components are visible only to privileged programs and the operating system. The PRA
provides the mechanisms necessary to manage the resources of the processor: virtual memory, caches, exceptions, user
contexts, etc.

2.2.3 MIPS Application Specific Extensions (ASES)

The MIPS32 and MIPS64 Architectures provide support for optional application specific extensions. As optional
extensions to the base architecture, the ASEs do not burden every implementation of the architecture with instructions
or capability that are not needed in a particular market. An ASE can be used with the appropriate ISA and PRA to meet
the needs of a specific application or an entire class of applications.

2.2.4 MIPS User Defined Instructions (UDIs)

In addition to support for ASEs as described above, the MIPS32 and MIPS64 Architectures define specific instructions
for the use of each implementation. T¥gecial2instruction function fields and Coprocessor 2 are reserved for
capability defined by each implementation.

8 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.3 Architecture Versus Implementation

2.3 Architecture Versus Implementation

When describing the characteristics of MIPS procesaarBitecturemust be distinguished from the hardware
implementation of that architecture

 Architecture refers to the instruction set, registers and other state, the exception model, memory management,
virtual and physical address layout, and other features that all hardware executes.

» Implementation refers to the way in which specific processors apply the architecture.

Here are two examples:

1. Afloating point unit (FPU) is an optional part of the MIPS32 Architecture. A compatible implementation of the
FPU may have different pipeline lengths, different hardware algorithms for performing multiplication or division,
etc.

2. Most MIPS processors have caches; however, these caches are not implemented in the same manner in all MIPS
processors. Some processors implement physically-indexed, physically tagged caches. Other implement
virtually-indexed, physically-tagged caches. Still other processor implement more than one level of cache.

The MIPS32 architecture is decoupled from specific hardware implementations, leaving microprocessor designers free
to create their own hardware designs within the framework of the architectural definition.

2.4 Relationship between the MIPS32 and MIPS64 Architectures

The MIPS Architecture evolved as a compromise between software and hardware resources. The architecture
guarantees object-code compatibility for User-Mode programs executed on any MIPS processor. In User Mode MIPS64
processors are backward-compatible with their MIPS32 predecessors. As such, the MIPS32 Architecture is a strict
subset of the MIPS64 Architecture. The relationship between the architectures is skayandar2-1

High-performance 64-bit

M"_DSG“ Instruction Set Architecture and
Architecture Privileged Resource
Architecture, fully backward
compatible with the 32-bit
architecture

MIPS32
Architecture

High-performance 32-bit
Instruction Set Architecture and
Privileged Resource
Architecture

Figure 2-1 Relationship between the MIPS32 and MIPS64 Architectures

2.5 Instructions, Sorted by ISA

This section lists the instructions that are a part of the MIPS32 and MIPS64 ISAs.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 9

Chapter 2 The MIPS Architecture: An Introduction

2.5.1 List of MIPS32 Instructions

Table 2-1lists of those instructions included in the MIPS32 ISA.

Table 2-1 MIPS32 Instructions

ABS.D ABS.S ADD ADD.D ADD.S ADDI ADDIU ADDU
AND ANDI BC1F BC1FL BC1T BC1TL BC2F BC2FL
BC2T BC2TL BEQ BEQL BGEZ BGEZAL BGEZALL BGEZL
BGTZ BGTZL BLEZ BLEZL BLTZ BLTZAL BLTZALL BLTZL
BNE BNEL BREAK C.cond.D C.cond.S CACHE CEILW.D CEILW.S
CFC1 CFC2 CLO CLz COP2 CTC1 CTC2 CVT.D.S
CVT.D.W CVT.S.D CVT.S.W CVT.W.D CVT.W.S DIV DIV.D DIV.S
DIVU ERET FLOOR.W.D | FLOOR.W.S J JAL JALR JR
LB LBU LDC1 LDC2 LH LHU LL LUI
LW Lwc1 Lwc2 LWL LWR MADD MADDU MFCO
MFC1 MFC2 MFHI MFLO MOV.D MOV.S MOVF MOVF.D
MOVF.S MOVN MOVN.D MOVN.S MOVT MOVT.D MOVT.S MOVZ
MOVZ.D MOVZ.S MSUB MSUBU MTCO MTC1 MTC2 MTHI
MTLO MUL MUL.D MUL.S MULT MULTU NEG.D NEG.S
NOR OR ORI PREF ROUND.W.D ROUND.W.§ SB SC
SDC1 sDC2 SH SLL SLLV SLT SLTI SLTIU
SLTU SQRT.D SQRT.S SRA SRAV SRL SRLV SSNOP
SUB SUB.D SUB.S SUBU SwW SWC1 SWC2 SWL
SWR SYNC SYSCALL TEQ TEQI TGE TGEI TGEIU
TGEU TLBP TLBR TLBWI TLBWR TLT TLTI TLTIU
TLTU TNE TNEI TRUNC.W.D | TRUNC.W.S WAIT XOR XORI
2.5.2 List of MIPS64 Instructions
Table 2-2lists of those instructions introduced in the MIPS64 ISA.
Table 2-2 MIPS64 Instructions
ABS.PS ADD.PS ALNV.PS C.cond.PS CEIL.L.D CEIL.L.S CVT.D.L CVT.L.D
CVT.L.S CVT.PS.S CVT.S.L CVT.S.PL CVT.S.PU DADD DADDI DADDIU
DADDU DCLO DDIV DDIVU DLCZ DMFCO DMFC1 DMFC2
DMTCO DMTC1 DMTC2 DMULT DMULTU DSLL DSLL32 DSLLV
DSRA DSRA32 DSRAV DSRL DSRL32 DSRLV DSUB DSUBU

10

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.6 Pipeline Architecture

Table 2-2 MIPS64 Instructions

FLOOR.L.D FLOOR.L.S LD LDL LDR LDXC1 LLD LUXC1
LWuU LWXC1 MADD.D MADD.PS MADD.S MOV.PS MOVF.PS MOVN.PS
MOVT.PS MOVZ.PS MSUB.D MSUB.PS MSUB.S MUL.PS NEG.PS NMADD.I
NMADD.PS NMADD.S NMSUB.D NMSUB.PS NMSUB.S PLL.PS PLU.PS PREFX
PUL.PS PUU.PS RECIP.D RECIP.S ROUND.L.D ROUND.LIS RSQRT.p RSQRT]
SCD SD SDL SDR SDXC1 SUB.PS SUXC1 SWXC1
TRUNC.L.D | TRUNC.L.S

S

2.6 Pipeline Architecture

This section describes the basic pipeline architecture, along with two types of improvements: superpipelines and
superscalar pipelines. (Pipelining and multiple issuing are not defined by the ISA, but are implementation dependent.)

2.6.1 Pipeline Stages and Execution Rates
MIPS processors all use some variation of a pipeline in their architecture. A pipeline is divided into the following discrete
parts, orstages shown inFigure 2-2
» Fetch
 Arithmetic operation

* Memory access

» Write back
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
Instruction 1 ALU e T < Instruction completion
Stage 2 Stage 3 Stage 4 Cycle 3
Execution Rate Instruction 2 Fetch ALU Memory Write
Stage 1 Stage 2 Stage 3 Stage 4

Figure 2-2 One-Deep Single-Completion Instruction Pipeline

In the example shown fRigure 2-2 each stage takes one processor clock cycle to complete. Thus it takes four clock
cycles (ignoring delays or stalls) for the instruction to complete. In this exampéxdbetion rateof the pipeline is

one instruction every four clock cycles. Conversely, because only a single execution can be fetched before completion,
only one stage is active at any time.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 11

Chapter 2 The MIPS Architecture: An Introduction

2.6.2 Parallel Pipeline

Figure 2-3illustrates a remedy for tHatency (the time it takes to execute an instruction) inherent in the pipeline shown
in Figure 2-2

Instead of waiting for an instruction to be completed before the next instruction can be fetched (four clock cycles), a new
instruction is fetched each clock cycle. There are four stages to the pipeline so the four instructions can be executed
simultaneously, one at each stage of the pipeline. It still takes four clock cycles for the first instruction to be completed,;
however, in this theoretical example, a new instruction is completed every clock cycle thereafter. Instru¢tignssin
2-3are executed at a rate four times that of the pipeline shokigune 2-2

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Fetch ALU Memory Write

Instruction 1

Fetch ALU Memory Write

Instruction 2

Fetch ALU Memory Write

Instruction 3

Fetch ALU Memory Write

Instruction 4

Figure 2-3 Four-Deep Single-Completion Pipeline

2.6.3 Superpipeline

Figure 2-4shows asuperpipelinedarchitecture. Each stage is designed to take only a fraction of an external clock
cycle—in this case, half a clock. Effectively, each stage is divided into more thanlmsiage Therefore more than
one instruction can be completed each cycle.

Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8

Clock
Phase

1|2

Fetch| ALU | Mem Writel
Fetch| ALU [Mem
[Feteh] ALU | Mem] witte

Fetch| ALU [Mem Writel
ALU | Mem

Fetch] ALU [Mem
Fetch| ALU | Mem Write'

Figure 2-4 Four-Deep Superpipeline

2.6.4 Superscalar Pipeline

A superscalararchitecture also allows more than one instruction to be completed each clockrigale 2-5shows a
four-way, five-stage superscalar pipeline.

12 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.7 Load/Store Architecture

Instruction 1 IF ID IS EX WB
Instruction 2 T= D IS EX WB
Instruction 3 = 1D IS EX WB
Instruction 4 T= D IS EX WB

Instruction 5 IF ID IS EX WB
Instruction 6 IF ID IS EX WB
Instruction 7 IE ID IS EX WB
Instruction 8 IE 1D IS EX WB

Five-stage

> Four-way

IF = instruction fetch

ID = instruction decode and dependency
IS = instruction issue

EX = execution

WB = write back

Figure 2-5 Four-Way Superscalar Pipeline

2.7 Load/Store Architecture

Generally, it takes longer to perform operations in memory than it does to perform them in on-chip registers. This is
because of the difference in time it takes to access a register (fast) and main memory (slower).

To eliminate the longer access timeJatency, of in-memory operations, MIPS processors ukzaad/storedesign. The
processor has many registers on chip, and all operations are performed on operands held in these processor registers.
Main memory is accessed only through load and store instructions. This has several benefits:

» Reducing the number of memory accesses, easing memory bandwidth requirements
» Simplifying the instruction set

» Making it easier for compilers to optimize register allocation

2.8 Programming Model

This section describes the following aspects of the programming model:
» “CPU Data Formats”

» “Coprocessors (CP0-CP3)”

» “CPU Registers”

* “FPU Data Formats”

» “Byte Ordering and Endianness”

* “Memory Access Types”

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 13

Chapter 2 The MIPS Architecture: An Introduction

2.8.1 CPU Data Formats

The CPU defines the following data formats:
* Bit (b)

Byte (8 bits,B)

Halfword (16 bitsH)

Word (32 bits\W)

Doubleword (64 bitsD)*

2.8.2 FPU Data Formats

The FPU defines the following data formats:

» 32-bit single-precision floating point (.fmt tyfe

32-bit single-precision floating point paired-single (.fmt tﬂ&l

64-bit double-precision floating point (.fmt typg
32-bit Word fixed point (.fmt typgV)
64-bit Long fixed point (.fmt type)®

2.8.3 Coprocessors (CP0-CP3)

The MIPS Architecture defines four coprocessors (designated CP0O, CP1, CP2, and CP3):

» Coprocessor 0QPQ) is incorporated on the CPU chip and supports the virtual memory system and exception
handling. CPO is also referred to as System Control Coprocessor

» Coprocessor 1QP1) is reserved for the floating point coprocessor, the FPU.

» Coprocessor 2qP2) is available for specific implementations.

e Coprocessor 33PJ) is reserved for the floating point unit in the MIPS64 Architecture.

CPO translates virtual addresses into physical addresses, manages exceptions, and handles switches between kernel,

supervisor, and user states. CPO0 also controls the cache subsystem, as well as providing diagnostic control and error
recovery facilities. The architectural features of CPO are defined in Volume Il

2.8.4 CPU Registers

The MIPS32 Architecture defines the following CPU registers:
» 32 32-bit general purpose registers (GPRs)

» a pair of special-purpose registers to hold the results of integer multiply, divide, and multiply-accumulate operations
(Hl and LO)

 a special-purpose program counter (PC), which is affected only indirectly by certain instructions - it is not an
architecturally-visible register.

1The CPU Doubleword and FPU floating point paired-single and and Long fixed point data formats are available only in the MIPS64
Architecture

14 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.8 Programming Model

2.8.4.1 CPU General-Purpose Registers

Two of the CPU general-purpose registers have assigned functions:

« r0 is hard-wired to a value of zero, and can be used as the target register for any instruction whose result is to be
discardedrO can also be used as a source when a zero value is needed.

» r31listhe destination register used by JAL, BLTZAL, BLTZALL, BGEZAL, and BGEZALL without being explicitly
specified in the instruction word. Otherwi$d is used as a normal register.

The remaining registers are available for general-purpose use.

2.8.4.2 CPU Special-Purpose Registers

The CPU contains three special-purpose registers:
» PC—Program Counter register
» HI—Multiply and Divide register higher result
e LO—Multiply and Divide register lower result
— During a multiply operation, thdl andLO registers store the product of integer multiply.

— During a multiply-add or multiply-subtract operation, HieandLO registers store the result of the integer
multiply-add or multiply-subtract.

— During a division, théll andLO registers store the quotient (i®) and remainder (ifll) of integer divide.

— During a multiply-accumulate, th#l andLO registers store the accumulated result of the operation.

Figure 2-6shows the layout of the CPU registers.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 15

Chapter 2 The MIPS Architecture: An Introduction

Figure 2-6 CPU Registers
31 0 31 0
rO (hardwired to zero) Hi

rl LO
r2
r3
r4
r5
6
r7
8
r9
r1o
ril
ri2
rl3
ri4
rl5
rl6
rl7
rl8
r19
r20
r21
r22
r23
r24
r25
r26
r27
r28
r29
r30 31 0
r31 PC

General Purpose Registers Special Purpose Registers

2.8.5 FPU Registers

The MIPS32 Architecture defines the following FPU registers:

» 32 32-bit floating point registers (FPRs). All 32 registers are available for use in single-precision floating point
operations. Double-precision floating point values are stored in even-odd pairs of FPRs.

» Five FPU control registers are used to identify and control the FPU.

16 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.8 Programming Model

The MIPS32 ISA includes 8 floating point condition codes as part of the FCSR register in the floating point unit.

Figure 2-7 shows the layout of the FPU Registers.

Figure 2-7 FPU Registers

31 0

fo

fl

f2

3

4

5

6

f7

8

f9

f10

f11

f12

f13

f14

f15

f16

f17

18

f19

20

f21

f22

f23

f24

f25

26 31 0

f27 FCRO

28 FCR25

f29 FCR26

30 FCR28

f31 FCSR

General Purpose Registers Special Purpose Registers

2.8.6 Byte Ordering and Endianness

Bytes within larger CPU data formats—halfword, word, and doubleword—can be configured in either big-endian or
little-endian order, as described in the following subsections:

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 17

Chapter 2 The MIPS Architecture: An Introduction

» “Big-Endian Order”
» “Little-Endian Order”
* “MIPS Bit Endianness”

Endiannessdefines the location of byte 0 within a larger data structure (in this book, bits are always numbered with 0
on the right). Figures 2-8 and 2-9 show the ordering of bytes within words and the ordering of words within
multiple-word structures for both big-endian and little-endian configurations.

2.8.6.1 Big-Endian Order

When configured ibig-endian order, byte 0 is the most-significant (left-hand) byte. Figure 2-8 shows this

configuration.
Higher Word Bilt #
Address Address| 31 24 23 16 15 8 7 0|
12 | 12 | 13 | 14 | 15 |
e [8 | o | 10 | u |
s | 5 | & | 7]
Lower o | H 1 H 2 | 3 ‘} 1 word = 4 bytes

Address
Figure 2-8 Big-Endian Byte Ordering
2.8.6.2 Little-Endian Order

When configured ifittle-endian order, byte 0 is always the least-significant (right-hand) byte. Figure 2-9 shows this
configuration.

Higher Word B',t #
Address Address | 31 24 23 16 15 8 7 0l
I

12 | 15 | 14 | 13 2 |
s | m | 0 | 9 | 8 |
a | | 6 | 5 | a4 |
owr o [s | 2 | 1 | o

Address

Figure 2-9 Little-Endian Byte Ordering

2.8.6.3 MIPS Bit Endianness

In this book, bit 0 is always the least-significant (right-hand) bit. Although no instructions explicitly designate bit
positions within words, MIPS bit designations are always little-endian.

Figure 2-10 shows big-endian and Figure 2-11 shows little-endian byte ordering in doublewords.

18 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.8 Programming Model

Most-significant byte Least-significant byte
Word /

|
Bit # 63\56 55 48 47 4039 32131 24 23 1615 8 7 /Ol
Bye# | O | 1 [2 | 3 || 4 || 5 | 6 | 77|

L [E—
Halfword Byte

|
Bit# [7 6 5 4 3 2 1 0

T

Bits in a byte

Figure 2-10 Big-Endian Data in Doubleword Format

Most-significant byte Least-significant byte
Word /
1
Bit# 63 \56 55 48 47 4039 32131 24 23 1615 8 7 /Ol
\
e [7 6 [5 J[4 | 8 | 2 | 1] o]
L]
Halfword Byte

1
Bit# 7 6 54321 0!

IR EREEN

Bits in a byte

Figure 2-11 Little-Endian Data in Doubleword Format

2.8.6.4 Addressing Alignment Constraints

The CPU uses byte addressing for halfword, word, and doubleword accesses with the following alignment constraints:
» Halfword accesses must be aligned on an even byte boundary (0, 2, 4...).
» Word accesses must be aligned on a byte boundary divisible by four (0, 4, 8...).

» Doubleword accesses must be aligned on a byte boundary divisible by eight (0, 8, 16...).

2.8.6.5 Unaligned Loads and Stores

The following instructions load and store words that are not aligned on word (W) or doubleword (D) boundaries:
Table 2-3 Unaligned Load and Store Instructions

Alignment Instructions Instruction Set
Word LWL, LWR, SWL, SWR MIPS32 ISA
Doubleword LDL, LDR, SDL, SDR MIPS64 ISA

Figure 2-12 show a big-endian access of a misaligned word that has byte address 3, and Figure 2-13 shows a little-endian
access of a misaligned word that has byte addréss 1.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 19

Chapter 2 The MIPS Architecture: An Introduction

20

Higher .

Address BI;[#
|31 24 23 16 15 87 O|
L 4 | s J[&8 | |
| [[| s |

Lower

Address

Figure 2-12 Big-Endian Misaligned Word Addressing

Higher)

Address BI}#
31 2423 16 15 87 ol
| [| 4 |
L3 L2 | 1] |

Lower

Address

Figure 2-13 Little-Endian Misaligned Word Addressing

2.8.7 Memory Access Types

MIPS systems provide severaemory access typeBhese are characteristic ways to use physical memory and caches
to perform a memory access.

Thememory access typés identified by the cache coherence algoritt®C@) bits in the TLB entry for each mapped

virtual page. The access type used for a location is associated with the virtual address, not the physical address or the
instruction making the reference. Memory access types are available for both uniprocessor and multiprocessor (MP)
implementations.

All implementations must provide the following memory access types:

* Uncached

» Cached

These memory access types are described in the following sections:
» “Uncached Memory Access”

» “Cached Memory Access”

2.8.7.1 Uncached Memory Access

In anuncachedaccess, physical memory resolves the access. Each reference causes a read or write to physical memory.
Caches are neither examined nor modified.

1These two figures show left-side misalignment.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

2.8 Programming Model

2.8.7.2 Cached Memory Access

In acachedaccess, physical memory and all caches in the system containing a copy of the physical location are used to
resolve the access. A copy of a location is coherent if the copy was placed in the cacaehieyl @ohererdccess; a

copy of a location is noncoherent if the copy was placed in the cacheabited noncohereaiccess. (Coherency is

dictated by the system architecture, not the processor implementation.)

Caches containing a coherent copy of the location are examined and/or modified to keep the contents of the location
coherent. Itis not possible to predict whether caches holding a noncoherent copy of the location will be examined and/or
modified during a&ached cohererdaccess.

2.8.8 Implementation-Specific Access Types

An implementation may provide memory access types otheuthzachedr cached Implementation-specific
documentation accompanies each processor, and defines the properties of the new access types and their effect on all
memory-related operations.

2.8.9 Cache Coherence Algorithms and Access Types

Memory access types are specified by architecturally-defined and implementation-specific cache coherence algorithm
bits (CCAs) kept in TLB entries.

Slightly different cache coherence algorithms such as “cached coherent, update on write” and “cached coherent,
exclusive on write” can map to the same memory access type; in this case they bothaaetpetth coherentn order to
map to the same access type, the fundamental mechanisms G#stimust be the same.

When the operation of the instruction is affected, the instructions are described in terms of memory access types. The
load and store operations in a processor proceed according to the s§p@ait€the reference, however, and the
pseudocode for load and store common functions usés@#evalue rather than the corresponding memory access type.

2.8.10 Mixing Access Types

It is possible to have more than one virtual location mapped to the same physical location (kal@gmgs The
memory access type used for the virtual mappings may be different, but it is not generally possible to use mappings with
different access types at the same time.

For all accesses to virtual locations with g@mememaory access type, a processor executing load and store instructions
on a physical location must ensure that the instructions occur in proper program order.

A processor can execute a load or store to a physical location using one access type, but any subsequent load or store to
the same location using a different memory access tyBIBRREDICTABLE , unless a privileged instruction sequence

to change the access type is executed between the two accesses. Each implementation has a privileged
implementation-specific mechanism to change access types.

The memory access type of a location affects the behavior of I-fetch, load, store, and prefetch operations to that location.

In addition, memory access types affect some instruction descriptions. Load Linked (LL, LLD) and Store Conditional
(SC, SCD) have defined operation only for locations wétthedmemory access type.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 21

Chapter 2 The MIPS Architecture: An Introduction

22 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

Chapter 3

Application Specific Extensions

This section gives an overview of the Architecture Specific Extensions that are supported by the MIPS32 Architecture.

3.1 Description of ASEs

As the MIPS architecture is adopted into a wider variety of markets, the need to extend this architecture in different
directions becomes more and more apparent. Therefore various optional application-specific extensions are provided for
use with the base ISAs (MIPS32 and MIPS64). The ASEs are optional, so the architecture is not permanently bound to
support them and the ASEs are used only as needed.

Extensions to the ISA are driven by the requirements of the computer segment, or by customers whose focus is primarily
on performance. An ASE can be used with the appropriate ISA to meet the needs of a specific application or an entire
class of applications.

Figure 3-1shows how ASEs interrelate with ISAs.

Enhanced Geometry Processing

MIPS64

. MIPS-3D
Architecture

ASE

RN
Code Compaction Next \
Generation |
ASE /
MIPS16 MIPS32)
ASE Architecture ~
SmartMIPS -
ASE - ~
Next
Generation |
Smart Cards MDMX \ ASE)
ASE \
~ _ s

Media Processing

Figure 3-1 MIPS ISAs and ASEs

Figure 3-2 User-Mode MIPS ISAs and Optional ASEs

The MIPS32 Architecture is a strict subset of the MIPS64 Architecture. ASEs are applicable to one or both of the base
architectures as dictated by market need and the requirements placed on the base architecture by the ASE definition.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 23

Chapter 3 Application Specific Extensions

3.2 List of Application Specific Instructions

As of the publishing date of this document, the following Application Specific Extensions were supported by the
architecture.

ASE Base Architecture Use
Requirement
MIPS16™ MIPS32 or MIPS64 Code Compaction
MDMX™ MIPS64 Digital Media
MIPS-3D™ MIPS64 Geometry Processing
SmartMIPS™ MIPS32 Smart Cards and Smart Objects

3.2.1 The MIPS16 Application Specific Extension to the MIPS32Architecture

The MIPS16 ASE is composed of 16-bit compressed code instructions, designed for the embedded processor market and
situations with tight memory constraints. The core can execute both 16- and 32-bit instructions intermixed in the same
program, and is compatible with both the MIPS32 and MIPS64 Architectures. Volume IV-a of this document set
describes the MIPS16 ASE.

3.2.2 The MDMX Application Specific Extension to the MIPS64 Architecture
The MIPS Digital Media Extension (MDMX) provides video, audio, and graphics pixel processing through vectors of

small integers. Although not a part of the MIPS ISA, this extension is included for informational purposes. Because the
MDMX ASE requires the MIPS64 Architecture, it is not discussed in this document set.

3.2.3 The MIPS-3D Application Specific Extension to the MIPS64 Architecture
The MIPS-3D ASE provides enhanced performance of geometry processing calculations by building on the paired single

floating point data type, and adding specific instructions to accelerate computations on these data types. Because the
MIPS-3D ASE requires the MIPS64 Architecture, it is not discussed in this document set.

3.2.4 The SmartMIPS Application Specific Extension to the MIPS32 Architecture
The SmartMIPS ASE extends the MIPS32 Architecture with a set of new and modified instruction designed to improve

the performance and reduce the memory consumption of MIPS-based smart card or smart object systems. Volume IV-d
of this document set describes the SmartMIPS ASE.

24 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

Chapter 4

Overview of the CPU Instruction Set

This chapter gives an overview of the CPU instructions, including a description of CPU instruction formats. An overview
of the FPU instructions is given in Chapter 5.

4.1 CPU Instructions, Grouped By Function

CPU instructions are organized into the following functional groups:
* Load and store

» Computational

» Jump and branch

* Miscellaneous

» Coprocessor

Each instruction is 32 bits long.

4.1.1 CPU Load and Store Instructions

MIPS processors use a load/store architecture; all operations are performed on operands held in processor registers and
main memory is accessed only through load and store instructions.

4.1.1.1 Types of Loads and Stores

There are several different types of load and store instructions, each designed for a different purpose:
 Transferring variously-sized fields (for example, LB, SW)

» Trading transferred data as signed or unsigned integers (for example, LHU)

» Accessing unaligned fields (for example, LWR, SWL)

» Atomic memory update (read-modify-write: for instance, LL/SC)

Regardless of the byte ordering (big- or little-endian), the address of a halfword, or word is the lowest byte address
among the bytes forming the object:

* For big-endian ordering, this is the most-significant byte.

« For a little-endian ordering, this is the least-significant byte.

Refer to “Byte Ordering and Endianness” on page 17 for more information on big-endian and little-endian data ordering.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 25

Chapter 4 Overview of the CPU Instruction Set

4.1.1.2 Load and Store Access Types

Table 4-1lists the data sizes that can be accessed through CPU load and store operations. These tables also indicate the
particular ISA within which each operation is defined.

Table 4-1 Load and Store Operations Using Register + Offset Addressing Mode

CPU Coprocessors 1 and 2
Data Size Load Load Store Load Store
Signed Unsigned
Byte MIPS32 MIPS32 MIPS32
Halfword MIPS32 MIPS32 MIPS32
Word MIPS32 MIPS64 MIPS32 MIPS32 MIPS32
Unaligned word MIPS32 MIPS32
Linked word (atomic modify) MIPS32 MIPS32

4.1.1.3 List of CPU Load and Store Instructions

The following data sizes (as defined in AwxessLengtfield) are transferred by CPU load and store instructions:
* Byte

* Halfword

» Word

Signed and unsigned integers of different sizes are supported by loads that either sign-extend or zero-extend the data
loaded into the register.

Table 4-2 lists aligned CPU load and store instructions, while unaligned loads and stores are listed in Table 4-3. Each
table also lists the MIPS ISA within which an instruction is defined.

Table 4-2 Aligned CPU Load/Store Instructions

Mnemonic Instruction Defined in MIPS ISA
LB Load Byte MIPS32
LBU Load Byte Unsigned MIPS32
LH Load Halfword MIPS32
LHU Load Halfword Unsigned MIPS32
Lw Load Word MIPS32
SB Store Byte MIPS32
SH Store Halfword MIPS32
SW Store Word MIPS32

Unaligned words and doublewords can be loaded or stored in just two instructions by using a pair of the special
instructions listed in Table 4-3. The load instructions read the left-side or right-side bytes (left or right side of register)
from an aligned word and merge them into the correct bytes of the destination register.

26 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

4.1 CPU Instructions, Grouped By Function

Unaligned CPU load and store instructions are listed in Table 4-3, along with the MIPS ISA within which an instruction

is defined.
Table 4-3 Unaligned CPU Load and Store Instructions
Mnemonic Instruction Defined in MIPS ISA
LWL Load Word Left MIPS32
LWR Load Word Right MIPS32
SWL Store Word Left MIPS32
SWR Store Word Right MIPS32

4.1.1.4 Loads and Stores Used for Atomic Updates

The paired instructions, Load Linked and Store Conditional, can be used to perform an atomic read-modify-write of
word or doubleword cached memory locations. These instructions are used in carefully coded sequences to provide one
of several synchronization primitives, including test-and-set, bit-level locks, semaphores, and sequencers and event
counts. Table 4-4 lists the LL and SC instructions, along with the MIPS ISA within which an instruction is defined.

Table 4-4 Atomic Update CPU Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA
LL Load Linked Word MIPS32
SC Store Conditional Word MIPS32

4.1.1.5 Coprocessor Loads and Stores

If a particular coprocessor is not enabled, loads and stores to that processor cannot execute and the attempted load or

store causes a Coprocessor Unusable exception. Enabling a coprocessor is a privileged operation provided by the System
Control Coprocessor, CPO.

Table 4-5 lists the coprocessor load and store instructions.
Table 4-5 Coprocessor Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA
LDCz Load Doubleword to Coprocessor-z,z =1 or 2 MIPS32
LWCz Load Word to Coprocessor-z, z =1 or 2 MIPS32
SDCz Store Doubleword from Coprocessor-z, z =1 or 2 MIPS32
SWCz Store Word from Coprocessor-z,z=1or 2 MIPS32

4.1.2 Computational Instructions

This section describes the following:

» “ALU Immediate and Three-Operand Instructions”
e “ALU Two-Operand Instructions”

* “Shift Instructions”

« “Multiply and Divide Instructions”

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 27

Chapter 4 Overview of the CPU Instruction Set

28

2's complement arithmetic is performed on integers represented in 2's complement notation. These are signed versions
of the following operations:

» Add

» Subtract
* Multiply
* Divide

The add and subtract operations labelled “unsigned” are actually modulo arithmetic without overflow detection.

There are also unsigned versionsmafitiply anddivide, as well as a full complement sfiift andlogical operations.
Logical operations are not sensitive to the width of the register.

MIPS32 provided 32-bit integers and 32-bit arithmetic.

4.1.2.1 ALU Immediate and Three-Operand Instructions

Table 4-6 lists those arithmetic and logical instructions that operate on one operand from a register and the other from a
16-bitimmediatevalue supplied by the instruction word. This table also lists the MIPS ISA within which an instruction
is defined.

Theimmediateoperand is treated as a signed value for the arithmetic and compare instructions, and treated as a logical
value (zero-extended to register length) for the logical instructions.

Table 4-6 ALU Instructions With an Immediate Operand

Mnemonic Instruction Defined in MIPS ISA
ADDI Add Immediate Word MIPS32
ADDIU?2 Add Immediate Unsigned Word MIPS32
ANDI And Immediate MIPS32
LUI Load Upper Immediate MIPS32
ORI Or Immediate MIPS32
SLTI Set on Less Than Immediate MIPS32
SLTIU Set on Less Than Immediate Unsigned MIPS32
XORI Exclusive Or Immediate MIPS32

a. The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does noteréipvan o

Table 4-7 describes ALU instructions that use three operands, along with the MIPS ISA within which an instruction is
defined.

Table 4-7 Three-Operand ALU Instructions

Mnemonic Instruction Defined in MIPS ISA
ADD Add Word MIPS32
ADDU? Add Unsigned Word MIPS32
AND And MIPS32
NOR Nor MIPS32

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

4.1 CPU Instructions, Grouped By Function

Table 4-7 Three-Operand ALU Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
OR Or MIPS32
SLT Set on Less Than MIPS32
SLTU Set on Less Than Unsigned MIPS32
SUB Subtract Word MIPS32
SUBLA Subtract Unsigned Word MIPS32
XOR Exclusive Or MIPS32

a. The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does noteréipvan o

4.1.2.2 ALU Two-Operand Instructions

Table 4-7 describes ALU instructions that use two operands, along with the MIPS ISA within which an instruction is
defined.

Table 4-8 Three-Operand ALU Instructions

Mnemonic Instruction Defined in MIPS ISA
CLO Count Leading Ones in Word MIPS32
CLz Count Leading Zeros in Word MIPS32
NOR Nor MIPS32
OR Or MIPS32
XOR Exclusive Or MIPS32

4.1.2.3 Shift Instructions

The ISA defines two types of shift instructions:
» Those that take a fixed shift amount from a 5-bit field in the instruction word (for instance, SLL, SRL)

* Those that take a shift amount from the low-order bits of a general register (for instance, SRAV, SRLV)

Shift instructions are listed in Table 4-9, along with the MIPS ISA within which an instruction is defined.
Table 4-9 Shift Instructions

Mnemonic Instruction Defined in MIPS ISA
SLL Shift Word Left Logical MIPS32
SLLV Shift Word Left Logical Variable MIPS32
SRA Shift Word Right Arithmetic MIPS32
SRAV Shift Word Right Arithmetic Variable MIPS32
SRL Shift Word Right Logical MIPS32
SRLV Shift Word Right Logical Variable MIPS32

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 29

Chapter 4 Overview of the CPU Instruction Set

30

4.1.2.4 Multiply and Divide Instructions

The multiply and divide instructions produce twice as many result bits as is typical with other processors. With one
exception, they deliver their results into tHeandLO special registers. The MUL instruction delivers the lower half of
the result directly to a GPR.

» Multiply produces a full-width product twice the width of the input operands; the low half is loaded@amd the
high half is loaded intéll.

* Multiply-Add andMultiply-Subtract produce a full-width product twice the width of the input operations and adds
or subtracts the product from the concatenated vallil @hdLO. The low half of the addition is loaded intd and
the high half is loaded intdl.

+ Divide produces a quotient that is loaded ih@and a remainder that is loaded iktb
The results are accessed by instructions that transfer data bétliie®rand the general registers.

Table 4-10 lists the multiply, divide, arldl/LO move instructions, along with the MIPS ISA within which an instruction
is defined.

Table 4-10 Multiply/Divide Instructions

Mnemonic Instruction Defined in MIPS ISA
DIV Divide Word MIPS32
DIVU Divide Unsigned Word MIPS32
MADD Multiply and Add Word MIPS32
MADDU Multiply and Add Word Unsigned MIPS32
MFHI Move From HI MIPS32
MFLO Move From LO MIPS32
MSUB Multiply and Subtract Word MIPS32
MSUBU Multiply and Subtract Word Unsigned MIPS32
MTHI Move To HI MIPS32
MTLO Move To LO MIPS32
MUL Multiply Word to Register MIPS32
MULT Multiply Word MIPS32
MULTU Multiply Unsigned Word MIPS32

4.1.3 Jump and Branch Instructions

This section describes the following:

» “Types of Jump and Branch Instructions Defined by the ISA”
» “Branch Delays and the Branch Delay Slot”

» “Branch and Branch Likely”

* “List of Jump and Branch Instructions”

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

4.1 CPU Instructions, Grouped By Function

4.1.3.1 Types of Jump and Branch Instructions Defined by the ISA

The architecture defines the following jump and branch instructions:
» PC-relative conditional branch

» PC-region unconditional jump

» Absolute (register) unconditional jump

» A set of procedure calls that record a return link address in a general register.

4.1.3.2 Branch Delays and the Branch Delay Slot

All branches have an architectural delay of one instruction. The instruction immediately following a branch is said to be
in thebranch delay slot If a branch or jump instruction is placed in the branch delay slot, the operation of both
instructions is undefined.

By convention, if an exception or interrupt prevents the completion of an instruction in the branch delay slot, the
instruction stream is continued by re-executing the branch instruction. To permit this, branches must be restartable;
procedure calls may not use the register in which the return link is stored (usuallgZ3 RiRdetermine the branch target
address.

4.1.3.3 Branch and Branch Likely

There are two versions of conditional branches; they differ in the manner in which they handle the instruction in the delay
slot when the branch is not taken and execution falls through.

» Branch instructions execute the instruction in the delay slot.

» Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said to
nullify the instruction in the delay slot).

Although the Branch Likely instructions are included in this specification, software is strongly encouraged to
avoid the use of the Branch Likely instructions, as they will be removed from a future revision of the MIPS
Architecture.

4.1.3.4 List of Jump and Branch Instructions

Table 4-11 lists instructions that jump to a procedure call within the current 256 MB-aligned region, or to an absolute
address held in a register.

Table 4-11 lists the unconditional jump instructions within a given 256 MByte region. Table 4-12 lists branch
instructions that compare two registers before conditionally executing a PC-relative branch. Table 4-13 lists branch
instructions that test a register—compare with zero—before conditionally executing a PC-relative branch. Table 4-14
lists the deprecated Branch Likely Instructions.

Each table also lists the MIPS ISA within which an instruction is defined.
Table 4-11 Unconditional Jump Within a 256 Megabyte Region

Mnemonic Instruction Location to Which Jump Is Made Defined in MIPS
ISA
J Jump 256 Megabyte Region MIPS32
JAL Jump and Link 256 Megabyte Region MIPS32
JALR Jump and Link Register Absolute Address MIPS32

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 31

Chapter 4 Overview of the CPU Instruction Set

32

Table 4-11 Unconditional Jump Within a 256 Megabyte Region

Defined in MIPS

Mnemonic Instruction Location to Which Jump Is Made
ISA
JALX Jump and Link Exchange Absolute Address MIPS16
JR Jump Register Absolute Address MIPS32

Table 4-12 PC-Relative Conditional Branch Instructions Comparing Two Registers

Mnemonic Instruction Defined in MIPS
ISA
BEQ Branch on Equal MIPS32
BNE Branch on Not Equal MIPS32

Table 4-13 PC-Relative Conditional Branch Instructions Comparing With Zero

Mnemonic Instruction Defined in MIPS
ISA
BGEZ Branch on Greater Than or Equal to Zero MIPS32
BGEZAL Branch on Greater Than or Equal to Zero and Link MIPS32
BGTZ Branch on Greater Than Zero MIPS32
BLEZ Branch on Less Than or Equal to Zero MIPS32
BLTZ Branch on Less Than Zero MIPS32
BLTZAL Branch on Less Than Zero and Link MIPS32
Table 4-14 Deprecated Branch Likely Instructions
Mnemonic Instruction Defined in MIPS
ISA
BEQL Branch on Equal Likely MIPS32
BGEZALL Branch on Greater Than or Equal to Zero and Link Likely MIPS32
BGEZL Branch on Greater Than or Equal to Zero Likely MIPS32
BGTZL Branch on Greater Than Zero Likely MIPS32
BLEZL Branch on Less Than or Equal to Zero Likely MIPS32
BLTZALL Branch on Less Than Zero and Link Likely MIPS32
BLTZL Branch on Less Than Zero Likely MIPS32
BNEL Branch on Not Equal Likely MIPS32

4.1.4 Miscellaneous Instructions

Miscellaneous instructions include:

* “Instruction Serialization (SYNC)”

» “Exception Instructions”

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

4.1 CPU Instructions, Grouped By Function

» “Conditional Move Instructions”
» “Prefetch Instructions”

¢ “NOP Instructions”

4.1.4.1 Instruction Serialization (SYNC)

In normal operation, the order in which load and store memory accesses appear to aNssathe executing
processor (for instance, in a multiprocessor system) is not specified by the architecture.

The SYNC instruction can be used to create a point in the executing instruction stream at which the relative order of
some loads and stores can be determined: loads and stores executed before the SYNC are completed before loads anc
stores after the SYNC can start.

Table 4-15 lists the SYNC instruction, along with the MIPS ISA within which it is defined.
Table 4-15 Serialization Instruction

Mnemonic Instruction Defined in MIPS ISA

SYNC Synchronize Shared Memory MIPS32

4.1.4.2 Exception Instructions

Exception instructions transfer control to a software exception handler in the kernel. There are two types of exceptions,
conditionalandunconditional These are caused by the following instructions:

Trap instructions, which cause conditional exceptions based upon the result of a comparison
System call and breakpoint instructions, which cause unconditional exceptions

Table 4-16 lists the system call and breakpoint instructions. Table 4-17 lists the trap instructions that compare two
registers. Table 4-18 lists trap instructions, which compare a register value \witmeadiatevalue.

Each table also lists the MIPS ISA within which an instruction is defined.
Table 4-16 System Call and Breakpoint Instructions

Mnemonic Instruction Defined in MIPS ISA
BREAK Breakpoint MIPS32
SYSCALL System Call MIPS32

Table 4-17 Trap-on-Condition Instructions Comparing Two Registers

Mnemonic Instruction Defined in MIPS ISA
TEQ Trap if Equal MIPS32
TGE Trap if Greater Than or Equal MIPS32
TGEU Trap if Greater Than or Equal Unsigned MIPS32
TLT Trap if Less Than MIPS32
TLTU Trap if Less Than Unsigned MIPS32II

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 33

Chapter 4 Overview of the CPU Instruction Set

Table 4-17 Trap-on-Condition Instructions Comparing Two Registers

Mnemonic Instruction Defined in MIPS ISA
TNE Trap if Not Equal MIPS32
Table 4-18 Trap-on-Condition Instructions Comparing an Immediate Value
Mnemonic Instruction Defined in MIPS ISA
TEQI Trap if Equal Immediate MIPS32
TGEI Trap if Greater Than or Equal Immediate MIPS32
TGEIU Trap if Greater Than or Equal Immediate Unsigned MIPS32
TLTI Trap if Less Than Immediate MIPS32
TLTIU Trap if Less Than Immediate Unsigned MIPS32
TNEI Trap if Not Equal Immediate MIPS32

4.1.4.3 Conditional Move Instructions

MIPS32 includes instructions to conditionally move one CPU general register to another, based on the value in a third
general register. For floating point conditional moves, refer to Chapter 4.

Table 4-19 lists conditional move instructions, along with the MIPS ISA within which an instruction is defined.
Table 4-19 CPU Conditional Move Instructions

Mnemonic Instruction Defined in MIPS ISA
MOVF Move Conditional on Floating Point False MIPS32
MOVN Move Conditional on Not Zero MIPS32
MOVT Move Conditional on Floating Point True MIPS32
MOvz Move Conditional on Zero MIPS32

4.1.4.4 Prefetch Instructions

There is one prefetch advisory instruction:
» One with register+offset addressing (PREF)
These instructions advise that memory is likely to be used in a particular way in the near future and should be prefetched

into the cache.
Table 4-20 Prefetch Instructions

Mnemonic Instruction Addressing Mode Defined in MIPS ISA

PREF Prefetch Register+Offset MIPS32

4.1.4.5 NOP Instructions

The NOP instruction is actually encoded as an all-zero instruction. MIPS processors special-case this encoding as
performing no operation, and optimize execution of the instruction. In addition, SSNOP instruction, takes up one issue
cycle on any processor, including super-scalar implementations of the architecture.

34 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

4.1 CPU Instructions, Grouped By Function

Table 4-21 lists conditional move instructions, along with the MIPS ISA within which an instruction is defined.
Table 4-21 NOP Instructions

Mnemonic Instruction Defined in MIPS ISA
NOP No Operation MIPS32
SSNOP Superscalar Inhibit NOP MIPS32

4.1.5 Coprocessor Instructions

This section contains information about the following:

» “What Coprocessors Do”

» “System Control Coprocessor 0 (CP0)”

» “Floating Point Coprocessor 1 (CP1)”

» “Coprocessor Load and Store Instructions”

4.1.5.1 What Coprocessors Do

Coprocessors are alternate execution units, with register files separate from the CPU. In abstraction, the MIPS
architecture provides for up to four coprocessor units, numbered 0 to 3. Each level of the ISA defines a number of these
coprocessors, as listed in Table 4-22.

Table 4-22 Coprocessor Definition and Use in the MIPS Architecture

Coprocessor MIPS32 MIPS64
CPO Sys Control Sys Control
CP1 FPU FPU
CP2 implementation specific
CP3 implementation specific FPU (COP1X)

Coprocessor 0 is always used for system control and coprocessor 1 and 3 are used for the floating point unit. Coprocessor
2 is reserved for implementation-specific use.

A coprocessor may have two different register sets:

» Coprocessor general registers

» Coprocessor control registers

Each set contains up to 32 registers. Coprocessor computational instructions may use the registers in either set.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

35

Chapter 4 Overview of the CPU Instruction Set

4.1.5.2 System Control Coprocessor 0 (CP0O)

The system controller for all MIPS processors is implemented as coprocessoﬂp (@F%ystem Control
Coprocessor It provides the processor control, memory management, and exception handling functions.

4.1.5.3 Floating Point Coprocessor 1 (CP1)

If a system includes Rloating Point Unit, it is implemented as coprocessor 1 (é)?DetaiIs of the FPU instructions
are documented in Chapter 5, “Overview of the FPU Instruction Set,” on page 39.

Coprocessor instructions are divided into two main groups:

» Load and store instructions (move to and from coprocessor), which are reserved in thpocodéspace

» Coprocessor-specific operations, which are defined entirely by the coprocessor

4.1.5.4 Coprocessor Load and Store Instructions

Explicit load and store instructions are not defined for CPO; for CPO only, the move to and from coprocessor instructions
must be used to write and read the CPO registers. The loads and stores for the remaining coprocessors are summarizec
in “Coprocessor Loads and Stores” on page 27.

4.2 CPU Instruction Formats

36

A CPU instruction is a single 32-bit aligned word. The CPU instruction formats are shown below:
* Immediate (se€igure 4-)

» Jump (seéigure 4-3

» Register (se€igure 4-3

1CPo instructions use the COPO opcode, and as such are differentiated from the CPO designation in this book.

2FPU instructions (such as LWC1, SDC1, etc.) that use the COP1 opcode are differentiated from the CP1 designation in this book. See
Chapter 5, “Overview of the FPU Instruction Set,” on page 39 for more information about the FPU instructions.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

4.2 CPU Instruction Formats

Table 4-23 describes the fields used in these instructions.

Table 4-23 CPU Instruction Format Fields

Field Description
opcode 6-bit primary operation code
rd 5-bit specifier for the destination register
rs 5-bit specifier for the source register
rt 5-bit specifier for the target (source/destination) register or used to specify functions within the
primaryopcodeREGIMM
immediate 16-bit signedmmediateused for logical operands, arithmetic signed operands, load/store
address byte offsets, and PC-relative branch signed instruction displacement
instr_index 26-bit index shifted left two bits to supply the low-order 28 bits of the jump target addregs
sa 5-bit shift amount
function 6-bit function field used to specify functions within the primapgodeSPECIAL
Figure 4-1 Immediate (I-Type) CPU Instruction Format
31 26 25 21 20 16 15 0
opcode rs ‘ rt ‘ immediate
6 5 5 16
Figure 4-2 Jump (J-Type) CPU Instruction Format
31 26 25 21 20 16 15 11 10 6 5 0
opcode instr_index
6 26
Figure 4-3 Register (R-Type) CPU Instruction Format
31 26 25 21 20 16 15 11 10 6 5 0
opcode rs rt ‘ rd sa function
6 5 5 5 5 6

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

37

Chapter 4 Overview of the CPU Instruction Set

38 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

Chapter 5¢

Overview of the FPU Instruction Set

This chapter describes the instruction set architecture (ISA) for the floating point unit (FPU) in the MIPS32 architecture.
In the MIPS architecture, the FPU is implemented via Coprocessor 1 and Coprocessor 3, an optional processor
implementing IEEE Standard 75#loating point operations. The FPU also provides a few additional operations not
defined by the IEEE standard.

This chapter provides an overview of the following FPU architectural details:

» Section 5.1 , "Binary Compatibility"

» Section 5.2 , "Enabling the Floating Point Coprocessor"

» Section 5.3 , "IEEE Standard 754"

» Section 5.4 , "FPU Data Types"

» Section 5.5 , "Floating Point Register Types"

» Section 5.6 , "Floating Point Control Registers (FCRs)"

» Section 5.7 , "Formats of Values Used in FP Registers"

» Section 5.8 , "FPU Exceptions"

» Section 5.9 , "FPU Instructions"

» Section 5.10 , "Valid Operands for FPU Instructions"

» Section 5.11 , "FPU Instruction Formats"

The FPU instruction set is summarized by functional group. Each instruction is also described individually in
alphabetical order in Volume Il.

5.1 Binary Compatibility
In addition to an Instruction Set Architecture, the MIPS architecture definition includes processing resources such as the
set of coprocessor general registers. The 32-bit registers in MIPS32 were enlarged to 64-bits in MIPS64; however, these
64-bit FPU registers are not backwards compatible. Instead, processors implementing the MIPS64 Architecture provide
a mode bit to select either the 32-bit or 64-bit register model.

Any processor implementing MIPS64 can also run MIPS32 binary programs without change.

5.2 Enabling the Floating Point Coprocessor

Enabling the Floating Point Coprocessor is done by enabling Coprocessor 1, and is a privileged operation provided by
the System Control Coprocessor. If Coprocessor 1 is not enabled, an attempt to execute a floating point instruction causes

Lin this chapter, references to “IEEE standard” and “IEEE Standard 754" refer to IEEE Standard 754-1985, “IEEE Standard for Binary
Floating Point Arithmetic.” For more information about this standard, see the IEEE web page at http://stdsbbs.ieee.org/.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 39

Chapter 5 Overview of the FPU Instruction Set

a Coprocessor Unusable exception. Every system environment either enables the FPU automatically or provides a means
for an application to request that it is enabled.

5.3 IEEE Standard 754

IEEE Standard 754 defines the following:
 Floating point data types
» The basic arithmetic, comparison, and conversion operations

» A computational model
The IEEE standard does not define specific processing resources nor does it define an instruction set.

The MIPS architecture includes non-IEEE FPU control and arithmetic operations (multiply-add, reciprocal, and
reciprocal square root) which may not supply results that match the IEEE precision rules.

5.4 FPU Data Types

40

The FPU provides both floating point and fixed point data types, which are described in the next two sections.
» The single and double precision floating point data types are those specified by the IEEE standard.

* The fixed point types are signed integers provided by the CPU architecture.

5.4.1 Floating Point Formats

The following three floating point formats are provided by the FPU:
» 32-bitsingle precisionfloating point (typeS, shown inFigure 5-)
* 64-bitdouble precisionfloating point (typeD, shown inFigure 5-2

The floating point data types represent numeric values as well as other special entities, such as the following:
* Two infinities,+c and e
* Signaling non-numbers (SNaNs)
* Quiet non-numbers (QNaNs)s
« Numbers of the form: (-£2% bo.by by, 1 where:

—-s=0orl

— E=any integer betweeli_minandE_max inclusive

— bj=0 or 1 (the high bithy, is to the left of the binary point)

— pis the signed-magnitude precision

Table 5-1 Parameters of Floating Point Data Types

Parameter Single Double
Bits of mantissa precision, p 24 53
Maximum exponent, E_max +127 +1023

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.4 FPU Data Types

Table 5-1 Parameters of Floating Point Data Types

Parameter Single Double
Minimum exponent, E_min -126 -1022
Exponentias +127 +1023
Bits in exponent fielde 8 11
Representation diy integer bit hidden hidden
Bits in fraction field f 23 52
Total format width in bits 32 64

The single and double floating point data types are composed of three f&lgis-exponentfraction—whose sizes are
listed inTable 5-1

Layouts of these fields are shown in Figusel and5-2 below. The fields are

» 1-bit sign,s

» Biased exponeng=E + bias

* Binary fractionf=.by by.05.1 (thePo bit is not recorded)

Figure 5-1 Single-Precisions Floating Point Format (S)

33 22
32 0

10
|S| Exponent Fraction |
1 8 23

Figure 5-2 Double-Precisions Floating Point Format (D)

66 55
21 0

32
H Exponent Fraction
1 11 52

Values are encoded in the specified format by using unbiased exponent, fraction, and sign value§ stecih2 The
high-order bit of thé-raction field, identified a®,, is also important for NaNs.

Table 5-2 Value of Single or Double Floating Point DataType Encoding

Unbiased E| f | s| k Value V Type of Value Typical Single Typical Double Bit
Bit Pattern? Pattern®
1 SNaN Signaling NaN 164#7fffffff 16#|rfffffff fffffff
E_max+ 1 0
0 QNaN Quiet NaN 16#7fbfffff 164 7ff7ffff ffffffff
1 - minus infinity 16#ff800000 16#fff00000 00000000
E max+1 0
0 + 00 plus infinity 16#7f800000 [L6#7ff00000 00000000

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 41

Chapter 5 Overview of the FPU Instruction Set

Table 5-2 Value of Single or Double Floating Point DataType Encoding

Unbiased E| f | s| k Value V Type of Value Typical Single Typical Double Bit
Bit Pattern® Pattern®
.) 16#80800000 | 16#80100000 00000000
1 - (Fyan | negative normalized through through
E_max 16#ff7fffff 16#ffefffff fffffff
to
E_min 16#00800000 16#00100000 00000000
0 + ()11 positive normalized number through through
16#7f7fffff 16#7fefffff fiffffff
1 - (F-mnoy) | negative denormalized -\ g gugo7trtt 16p800fH it
E_min-1 0 — -
0 + (F-mnof | Positive denormalized 1 364007t 16f00MfH fffT
1 -0 negative zero 16#80000000 |16#80000000 00000000
E_min-1 0
0 +0 positive zero 16#00000000 |16#00000000 00000000

a. The "Typical" nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign may have either value (NaN) anatthe fact th

42

the fraction field may have any non-zero value (both). As such, the bit patterns shown are one value in a class of potential values that represent these
special values.

5.4.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers are kept
in normalized form. The high-order bit of thebit mantissa, which lies to the left of the binary point, is “hidden,” and
not recorded in th€ractionfield. The encoding rules permit the value of this bit to be determined by looking at the value
of the exponent. When the unbiased exponent is in the rangento E_max inclusive, the number is normalized and
the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would b&lassthan
then the representation is denormalized and the encoded number has an expBnaritidfand the hidden bit has the
value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

5.4.1.2 Reserved Operand Values—Infinity and NaN

A floating point operation can signal IEEE exception conditions, such as those caused by uninitialized variables,
violations of mathematical rules, or results that cannot be represented. If a program does not choose to trap IEEE
exception conditions, a computation that encounters these conditions proceeds without trapping but generates a result
indicating that an exceptional condition arose during the computation. To permit this, each floating point format defines
representations, listed able 5-2 for plus infinity (+0), minus infinity (<o), quiet non-numbers (QNaN), and signaling
non-numbers (SNaN).

5.4.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the format; in essence it exists to represent a
magnitude overflow during a computation. A correctly sigmad generated as the default result in division by zero and
some cases of overflow; details are given in the IEEE exception condition described in.

Once created as a default resuitcan become an operand in a subsequent operation. The infinities are interpreted such
that o < (every finite number) <eb. Arithmetic witheo is the limiting case of real arithmetic with operands of

arbitrarily large magnitude, when such limits exist. In these cases, arithmetitsoagarded as exact and exception
conditions do not arise. The out-of-range indication representeddpropagated through subsequent computations.
For some cases there is no meaningful limiting case in real arithmetic for operandsraf these cases raise the Invalid
Operation exception condition (see “Invalid Operation Exception” on page 53).

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.4 FPU Data Types

5.4.1.4 Signalling Non-Number (SNaN)

SNaN operands cause the Invalid Operation exception for arithmetic operations. SNaNs are useful values to put in
uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid
Operation exception is the implementor’s option.” The MIPS architecture has chosen to make the formatted operand
move instructions (MOV.fmt MOVT.fmt MOVF.fmt MOVN.fmt MOVZ.fmt) non-arithmetic and they do not signal

IEEE 754 exceptions.

5.4.1.5 Quiet Non-Number (QNaN)

QNaNs are intended to afford retrospective diagnostic information inherited from invalid or unavailable data and results.
Propagation of the diagnostic information requires information contained in a QNaN to be preserved through arithmetic
operations and floating point format conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating point result is to be delivered,
a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is one of the
operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a floating point result—
specifically, comparisons. (For more information, see the detailed description of the floating point compare instruction,
C.cond.fmt.)

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not
enabled), a new QNaN value is creat€&able 5-3shows the QNaN value generated when no input operand QNaN value
can be copied. The values listed for the fixed point formats are the values supplied to satisfy the IEEE standard when a
QNaN or infinite floating point value is converted to fixed point. There is no other feature of the architecture that detects
or makes use of these “integer QNaN” values.

Table 5-3 Value Supplied When a New Quiet NaN Is Created

Format New QNaN value

Single floating point | 16#7fbf ffff

Double floating point | 16#7ff7 ffff ffff ffff

Word fixed point 16#7fff ffff

Fixed Point Formats

The FPU provides one fixed point data type:

» 32-bitWord fixed point (type\), shown in Figure 5-3

The fixed point values are held in the 2's complement format used for signed integers in the CPU. Unsigned fixed point
data types are not provided by the architecture; application software may synthesize computations for unsigned integers
from the existing instructions and data types.

Figure 5-3 Word Fixed Point Format (W)

33

10 0
|S| Integer |
1 31

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 43

Chapter 5 Overview of the FPU Instruction Set

5.5 Floating Point Register Types

This section describes the organization and use of the two types of FPU register sets:

 Floating Pointregisters FPRs) are 64 bits wide. Depending on the mode of operation, there are either 16 or 32 FPR
registers in the register file. The FR Bit of the CPO Status register determines which mode is selected:

— WhenThe FR Bitis a 1, the FPU defines 32 FPRs
— WhenThe FR Bitis a 0, the FPU defines 16 FPRs (this mode is supported only for backward compatibility with
the MIPS32 Architecture)
These registers transfer binary data between the FPU and the system, and are also used to hold formatted FPU operand
values. Refer to Volume 11, The MIPS Privileged Architecture Manual, for more information on the CPO Registers.

* Floating Point Controlregisters FCRs), which are 32 bits wide. There are five FPU control registers, used to identify
and control the FPU. These registers are indicated K fisdd of the instruction word. Three of these registers,
FCCR FEXR andFENR,select subsets of the floating paBiantrol/Statugegister, thé&=CSR

5.5.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specifgatiag point register (FPR) that holds the value.

5.6 Floating Point Control Registers (FCRS)

The MIPS32 Architecture supports the following five floating pGiontrol registers ECRS:
* FIR, FPImplementation and Revisioagister
FCCR FPCondition Codesegister

FEXR FPExceptiongegister

FENR FPEnablesregister
FCSR FPControl/Statugegister (used to be known BER3)).

FCCR FEXR andFENRaccess portions of tHeCSRthrough CTC1 and CFC1 instructions.
Access to the Floating Point Control Registers is not privileged; they can be accessed by any program that can execute
floating point instructions. The FCRs can be accessed via the CTC1 and CFCL1 instructions.
5.6.1 Floating Point Implementation Register (FCCR, CP1 Control Register 0)
Compliance Level:Requiredif floating point is implemented
The Floating Point Implementation RegistEtR) is a 32-bit read-only register that contains information identifying the

capabilities of the floating point unit, the floating point processor identification, and the revision level of the floating
point unit. Figure 5-4 shows the format of R register;Table 5-4describes th&IR register fields.

Figure 5-4 FIR Register Format
31 20 19 18 17 16 15 8 7 0

0 -
0000 0000 0000 3D|PS D S ProcessoriD Revision

44 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.6 Floating Point Control Registers (FCRS)

Table 5-4 FIR Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

0 31:20 Reserved for future use; reads as zero q 0 Reserved

Used by MIPS64 processors to indicate that the
3D 19 MIPS-3D ASE is implemented. Not used by MIPS3
processors and always reads as zero.

N
o
o

Required

Used by MIPS64 processors to indicate that the
PS 18 pair-single floating point data type isimplemented. Not 0 0 Required
used by MIPS32 processors and always reads as zero.

—

Indicates that the double-precision (D) floating poin
data type and instructions are implemented:

0: D floating not implemented R Preset Required

1: D floating implemented

Indicates that the single-precision (S) floating point
data type and instructions are implemented:

0: S floating not implemented R Preset Required

1: S floating implemented

ProcessorID 15:8 Identifies the floating point processor. R Preset Requifed

Specifies the revision number of the floating point unit.
This field allows software to distinguish between one
Revision 7:0 revision and another of the same floating point R Preset Optional
processor type. If this field is not implemented, it musst
read as zero.

5.6.2 Floating Point Control and Status Register (FCSR, CP1 Control Register 31)
Compliance Level:Requiredf floating point is implemented.
The Floating Point Control and Status RegisEEER is a 32-bit register that controls the operation of the floating point
unit, and shows the following status information:
» selects the default rounding mode for FPU arithmetic operations
« selectively enables traps of FPU exception conditions
 controls some denormalized number handling options
* reports any IEEE exceptions that arose during the most recently executed instruction
« reports IEEE exceptions that arose, cumulatively, in completed instructions
« indicates the condition code result of FP compare instructions
Access td-CSRis not privileged; it can be read or written by any program that has access to the floating point unit (via

the coprocessor enables in Batugegister). Figure 5-5 shows the format of tHR@SRregister;Table 5-5describes the
FCSRregister fields.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 45

Chapter 5 Overview of the FPU Instruction Set

Figure 5-5 FCSR Register Format
31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

FCC FS FCC Impl 080 Cause Enables Flags RM

IDEEEERNK REEEENECTENECTE

Table 5-5 FCSR Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

Floating point condition codes. These bits record th
result of floating point compares and are tested for
floating point conditional branches and conditional

FCC 31:25, 23| moves. The FCC bit to use is specified in the compgre, R/W Undefined Required
branch, or conditional move instruction. For backwald
compatibility with previous MIPS ISAs, the FCC bitg
are separated into two, non-contiguous fields.

]

Flush to Zero. When FS is one, denormalized results

are flushed to zero instead of causing an
Unimplemented Operation exception. It is .

FS 24 implementation dependent whether denormalized RIW Undefined

operand values are flushed to zero before the operation

is carried out.

Required

Available to control implementation dependent
features of the floating point unit. If these bits are npt RIW
implemented, they must be ignored on write and read as

zero.

Impl 22:21 Undefined Optional

Reserved for future use; Must be written as zero; 0 0

0 20:18 returns zero on read.

Reserved

Cause bits. These bits indicate the exception conditipns
that arise during execution of an FPU arithmetic
instruction. A bit is set to 1 if the corresponding
exception condition arises during the execution of &

. instruction and is set to 0 otherwise. By reading the :
Cause 1ri2 registers, the exception condition caused by the RIW Undefined
preceding FPU arithmetic instruction can be
determined.

>

Required

Refer toTable 5-6for the meaning of each bit.

Enable bits. These bits control whether or not a
exception is taken when an IEEE exception conditipn
occurs for any of the five conditions. The exception
occurs when both an Enable bit and the corresponding
Cause bit are set either during an FPU arithmetic
. operation or by moving a value to FCSR or one of its :

Enables 1 alternative representations. Note that Cause bit E Has RIW Undefined
no corresponding Enable bit; the non-IEEE
Unimplemented Operation exception is defined by
MIPS as always enabled.

Required

Refer toTable 5-6for the meaning of each bit.

46 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.6 Floating Point Control Registers (FCRS)

Table 5-5 FCSR Register Field Descriptions

Fields

Name Bits

Description

Read/
Write

Reset State

Compliance

Flags 6:2

Flag bits. This field shows any exception conditions
that have occurred for completed instructions since
flag was last reset by software.

When a FPU arithmetic operation raises an IEEE
exception condition that does not result in a Floatin
Point Exception (i.e., the Enable bit was off), the
corresponding bit(s) in the Flag field are set, while t
others remain unchanged. Arithmetic operations th
result in a Floating Point Exception (i.e., the Enable
was on) do not update the Flag bits.

This field is never reset by hardware and must be
explicitly reset by software.

Refer toTable 5-6for the meaning of each bit.

he

0

he
ot R/IW

Dit

Undefined

Required

RM 1:0

Rounding mode. This field indicates the rounding
mode used for most floating point operations (somg
operations use a specific rounding mode).

Refer toTable 5-7for the meaning of the encodings g
this field.

R/W

Undefined

Required.

The FCC, FS, Cause, Enables, Flags and RM fields in the FCSR, FCCR, FEXR, and FENR registers always display the
correct state. That s, if a field is written via FCCR, the new value may be read via one of the alternate registers. Similarly,
if a value is written via one of the alternate registers, the new value may be read via FCSR.

Table 5-6 Cause, Enable, and Flag Bit Definitions

Bit Name Bit Meaning
E Unimplemented Operation (this bit exists only in the
Cause field)
\% Invalid Operation
Z Divide by Zero
o Overflow
U Underflow
| Inexact

Table 5-7 Rounding Mode Definitions

RM Field Meaning
Encoding
RN - Round to Nearest
0 Rounds the result to the nearest representable value. When two representable values are equally
near, the result is rounded to the value whose least significant bit is zero (that is, even)
RZ - Round Toward Zero
1
Rounds the result to the value closest to but not greater than in magnitude than the resulf.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 47

Chapter 5 Overview of the FPU Instruction Set

Table 5-7 Rounding Mode Definitions

RM Field Meaning
Encoding
RP - Round Towards Plus Infinity
2 Rounds the result to the value closest to but not less than the result.
3 RM - Round Towards Minus Infinity

Rounds the result to the value closest to but not greater than the result.

5.6.3 Floating Point Condition Codes Register (FCCR, CP1 Control Register 25)
Compliance Level:Requiredif floating point is implemented.
The Floating Point Condition Codes Registe€CR is an alternative way to read and write the floating point condition

code values that also appeaFi@SR Unlike FCSR all eight FCC bits are contiguousk€CR Figure 5-6 shows the
format of theFCCRregister;Table 5-8describes thECCRregister fields.

Figure 5-6 FCCR Register Format
31 8 7 0

0
0000 0000 0000 0000 0000 0000 FCC

7‘6‘5‘4‘ 3\ 2\ 1\ 0

Table 5-8 FCCR Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
0 31:8 Must be written as zero; returns zero on read d 0 Reserved
. Floating point condition code. Refer to the description] :
FCC 70 of this field in the=CSRregister. RIW Undefined Required

5.6.4 Floating Point Exceptions Register (FEXR, CP1 Control Register 26)
Compliance Level:Requiredf floating point is implemented.

The Floating Point Exceptions RegistEEKR) is an alternative way to read and write the Cause and Flags fields that
also appear iFCSR Figure 5-7 shows the format of tR&XRregister;Table 5-9describes thEEXRregister fields.

Figure 5-7 FEXR Register Format

31 18 17 16 15 14 13 12 11 7 6 5 4 3 3 1 0
0000 0000 0000 00 Cause 00 000 Flags 00
E|v|z|o|u|| v\z\o\u\l

48 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.7 Formats of Values Used in FP Registers

Table 5-9 FEXR Register Field Descriptions

Fields Description Read/ | Reset State| Compliance

- Write

Name Bits
31:18,
0 11:7, Must be written as zero; returns zero on read 0 0 Reserved
1.0

. Cause bits. Refer to the description of this field in the " ;
Cause 17:12 FCSRregister. R/W Undefined Required

. Flags bits. Refer to the description of this field in the . ;
Flags 6:2 FCSRregister. R/W Undefined Optional

5.6.5 Floating Point Enables Register (FENR, CP1 Control Register 28)
Compliance Level:Requiredf floating point is implemented.

The Floating Point Enables RegistEiENR) is an alternative way to read and write the Enables, FS, and RM fields that
also appear iFCSR Figure 5-8 shows the format of tRENRregister;Table 5-10describes thEENRregister fields.

Figure 5-8 FENR Register Format

31 121110 9 8 7 6 32 10
0 Enables 0 Fs| RM
0000 0000 0000 0000 0000 000 0
v | z | o| U| |

Table 5-10 FENR Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
0 3(13%2 Must be written as zero; returns zero on read 0 0 Reserved
. Enable bits. Refer to the description of this field in the . .
Enables 11:7 FCSRregister. R/W Undefined Required
Flush to Zero bit. Refer to the description of this field] :
FS 2 in the FCSRregister. R/W Undefined Required
. Rounding mode. Refer to the description of this field|in . :
RM 1.0 the FCSRregister. R/W Undefined Required

5.7 Formats of Values Used in FP Registers
Unlike the CPU, the FPU does not interpret the binary encoding of source operands nor produce a binary encoding of
results for every operation. The value held in a floating point operand register (FPR) has a format, or type, and it may be
used only by instructions that operate on that format. The format of a value is @itimerpretedunknown or one of
the valid numeric formatsingleanddoublefloating point, andvord andlong fixed point.

The value in an FPR is always set when a value is written to the register:

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 49

Chapter 5 Overview of the FPU Instruction Set

50

» When a data transfer instruction writes binary data into an FPR (a load), the FPR receives a binary value that is
uninterpreted

» A computational or FP register move instruction that produces a result dfrtijpets a value of typemtinto the
result register.

When an FPR with aaninterpretedvalue is used as a source operand by an instruction that requires a value of format
fmt, the binary contents are interpreted as an encoded value in fonteatd the value in the FPR changes to a value of
formatfmt The binary contents cannot be reinterpreted in a different format.

If an FPR contains a value of fornfatt, a computational instruction must not use the FPR as a source operand of a
different format. If this occurs, the value in the register becoomsownrand the result of the instruction is also a value
that isunknown Using an FPR containing amknownvalue as a source operand produces a result that haskaown
value.

The format of the value in the FPR is unchanged when it is read by a data transfer instruction (a store). A data transfer
instruction produces a binary encoding of the value contained in the FPR. If the value in theuRRRaw/nthe encoded
binary value produced by the operation is not defined.

The state diagram in Figure 5-9 illustrates the manner in which the formatted value in an FPR is set and changed.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.8 FPU Exceptions

(binary
encoding)

Rslt
unknown

Src A
(interpret)

Src B
(interpret)

Valuein
format

Valuein
format

Rslt
unknown

unknown

A, B:Example formats

Load:Destination of LWC1, LDC1, or MTC1 instructions.

Store:Source operand of SWC1, SDC1, or MFC1 instructions.

Src fmt:Source operand of computational instruction expecting format “fmt.”
Rslt fmt:Result of computational instruction producing value of format “fmt.”

Figure 5-9 Effect of FPU Operations on the Format of Values Held in FPRs

5.8 FPU Exceptions

This section provides the following information FPU exceptions:

» Precise exception mode

 Descriptions of the exceptions

FPU exceptions are implemented in the MIPS FPU architecture wi@etlee, EnableandFlag fields of the
Control/Statugegister. Thd-lag bits implement IEEE exception status flags, and#seseandEnablebits control

exception trapping. Each field has a bit for each of the five IEEE exception conditions @addbfeld has an
additional exception bit, Unimplemented Operation, used to trap for software emulation assistance.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 51

Chapter 5 Overview of the FPU Instruction Set

5.8.0.1 Precise Exception Mode

In precise exception mode, a trap occurs before the instruction that causes the trap, or any following instruction, can
complete and write its results. If desired, the software trap handler can resume execution of the interrupted instruction
stream after handling the exception.

The Causefield reports per-bit instruction exception conditions. Tlagisebits are written during each floating point
arithmetic operation to show any exception conditions that arise during the operation. The bit is set to 1 if the
corresponding exception condition arises; otherwise it is set to 0.

A floating point trap is generated any time botBausebit and its correspondingnablebit are set. This occurs either
during the execution of a floating point operation or by moving a value intfla8& There is ndnablefor
Unimplemented Operation; this exception always generates a trap.

In a trap handler, exception conditions that arise during any trapped floating point operations are report€dus¢he
field. Before returning from a floating point interrupt or exception, or before sefanggebits with a move to th&CSR
software must first clear the enabl@dusebits by executing a move ©CSRto prevent the trap from being erroneously
retaken.

User-mode programs cannot observe enaBkrasebits being set. If this information is required in a User-mode handler,
it must be available someplace other than througlsthtisregister.

If a floating point operation sets only non-enab@alisebits, no trap occurs and the default result defined by the IEEE
standard is stored (s@able 5-1). When a floating point operation does not trap, the program can monitor the exception
conditions by reading th€ausefield.

TheFlag field is a cumulative report of IEEE exception conditions that arise as instructions complete; instructions that
trap do not update thielag bits. TheFlag bits are set to 1 if the corresponding IEEE exception is raised, otherwise the
bits are unchanged. There isFlag bit for the MIPS Unimplemented Operation exception. FFlag bits are never

cleared as a side effect of floating point operations, but may be set or cleared by moving a new valued&ta the

Addressing exceptions are precise.

5.8.1 Exception Conditions

The following five exception conditions defined by the IEEE standard are described in this section:

* “Invalid Operation Exception”

« “Division By Zero Exception”

 “Underflow Exception”

» “Overflow Exception”

 “Inexact Exception”

This section also describes a MIPS-specific exception conditiimplemented Operation that is used to signal a

need for software emulation of an instruction. Normally an IEEE arithmetic operation can cause only one exception

condition; the only case in which two exceptions can occur at the same time are Inexact With Overflow and Inexact With
Underflow.

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a trap. The IEEE standard

specifies the result to be delivered in case the exception is not enabled and no trap is taken. The MIPS architecture
supplies these results whenever the exception condition does not result in a precise trap (that is, no trap or an imprecise

52 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.8 FPU Exceptions

trap). The default action taken depends on the type of exception condition, and in the case of the Overflow, the current
rounding mode. The default results are summarizddle 5-11

Table 5-11 Default Result for IEEE Exceptions Not Trapped Precisely

Bit Description Default Action

\Y Invalid Operation | Supplies a quiet NaN.

z Divide by zero Supplies a properly signed infinity.
U Underflow Supplies a rounded result.
| Inexact Supplies a rounded result. If caused by an overflow without the overflow trap enabled,
supplies the overflowed result.
(0] Overflow Depends on the rounding mode, as shown below.
0 (RN) Supplies an infinity with the sign of the intermediate result.
1 (R2) Supplies the format’s largest finite number with the sign of the intermediate result.
2 (RP) tFhor positivg overflow values, supplies positive infinity. For negative overflow values, supplies
e format's most negative finite number.
3 (RM) For positive overflow values, supplies the format's largest finite number. For negative

overflow values, supplies minus infinity.

5.8.1.1 Invalid Operation Exception

The Invalid Operation exception is signaled if one or both of the operands are invalid for the operation to be performed.
The result, when the exception condition occurs without a precise trap, is a quiet NaN.

These are invalid operations:

» One or both operands are a signaling NaN (except for the non-arithmetic MO¥®DMT.fmt, MOVF.fmt,
MOVN.fmt, andMOVZ.fmt instructions).

 Addition or subtraction: magnitude subtraction of infinities, such @¥ {+-c) or (<o) - (-c0).
» Multiplication: 0 x o, with any signs.

« Division: 0/0 oreo/oo, with any signs.

» Square root: An operand of less than 0 (-0 is a valid operand value).

» Conversion of a floating point number to a fixed point format when either an overflow or an operand value of infinity
or NaN precludes a faithful representation in that format.

» Some comparison operations in which one or both of the operands is a QNaN value. (The detailed definition of the
compare instruction, C.cond.fmt, in Volume |l has tables showing the comparisons that do and do not signal the
exception.)

5.8.1.2 Division By Zero Exception

An implemented divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a finite
nonzero number. The result, when no precise trap occurs, is a correctly signed infinity. Divisions (0/)Cald (ot

cause the Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The regQltisfg

correctly signed infinity.

5.8.1.3 Underflow Exception

Two related events contribute to underflow:

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 53

Chapter 5 Overview of the FPU Instruction Set

54

 Tininess: the creation of a tiny nonzero result bet minwhich, because it is tiny, may cause some other
exception later such as overflow on division

» Loss of accuracy: the extraordinary loss of accuracy during the approximation of such tiny numbers by denormalized
numbers

Tininess: The IEEE standard allows choices in detecting these events, but requires that they be detected in the same

manner for all operations. The IEEE standard specifies that “tininess” may be detected at either of these times:

+ After rounding when a nonzero result computed as though the exponent range were unbounded would lie strictly
betweens2E-min

+ Before roundingwhen a nonzero result computed as though both the exponent range and the precision were
unbounded would lie strictly betweegE-—min

The MIPS architecture specifies that tininess be detected after rounding.

Loss of Accuracy:The IEEE standard specifies that loss of accuracy may be detected as a result of either of these
conditions:

» Denormalization losswhen the delivered result differs from what would have been computed if the exponent range
were unbounded

* Inexact resultwhen the delivered result differs from what would have been computed if both the exponent range and
precision were unbounded

The MIPS architecture specifies that loss of accuracy is detected as inexact result.

Signalling an Underflow: When an underflow trap is not enabled, underflow is signaled only when both tininess and
loss of accuracy have been detected. The delivered result might be zero, denormalfzéd or 2

When an underflow trap is enabled (throughB@SR Enablédield bit), underflow is signaled when tininess is detected
regardless of loss of accuracy.

5.8.1.4 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating point result, were the exponent range
unbounded, is larger than the destination format's largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

5.8.1.5 Inexact Exception

An Inexact exception is signaled if one of the following occurs:
» The rounded result of an operation is not exact

* The rounded result of an operation overflows without an overflow trap

5.8.1.6 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS defined exception that provides software emulation support. This
exception is not IEEE-compliant.

The MIPS architecture is designed so that a combination of hardware and software may be used to implement the

architecture. Operations that are not fully supported in hardware cause an Unimplemented Operation exception so that
software may perform the operation.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.9 FPU Instructions

There is ndEnablebit for this condition; it always causes a trap. After the appropriate emulation or other operation is
done in a software exception handler, the original instruction stream can be continued.

5.9 FPU Instructions

The FPU instructions comprise the following functional groups:
» “Data Transfer Instructions”

» “Arithmetic Instructions”

» “Conversion Instructions”

» “Formatted Operand-Value Move Instructions”

» “Conditional Branch Instructions”

* “Miscellaneous Instructions”

5.9.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers and coprocessor control registers. The FPU has &
load/store architecture; all computations are done on data held in coprocessor general registers. The control registers are
used to control FPU operation. Data is transferred between registers and the rest of the system with dedicated load, store,
and move instructions. The transferred data is treated as unformatted binary data; no format conversions are performed,
and therefore no IEEE floating point exceptions can occur.

The supported transfer operations are listethinle 5-12
Table 5-12 FPU Data Transfer Instructions

Transfer Direction Data Transferred
FPU general reg o Memory Word/doubleword load/store
FPU general reg - CPU general reg Word move
FPU control reg - CPU general reg Word move

5.9.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor loads and stores operate on naturally-aligned data items. An attempt to load or store to an address that
is not naturally aligned for the data item causes an Address Error exception. Regardless of byte-ordering (the
endianness), the address of a word or doubleword is the smallest byte address in the object. For a big-endian machine,
this is the most-significant byte; for a little-endian machine, this is the least-significant byte (endianness is described in
“Byte Ordering and Endianness” on page 17).

5.9.1.2 Addressing Used in Data Transfer Instructions
The FPU has loads and stores using the sagigter+offsetaddressing as that used by the CPU.

Tables5-13through 5-14 list the FPU data transfer instructions.
Table 5-13 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic Instruction Defined in MIPS ISA

LDC1 Load Doubleword to Floating Point MIPS32

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 55

Chapter 5 Overview of the FPU Instruction Set

Table 5-13 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic Instruction Defined in MIPS ISA
LWC1 Load Word to Floating Point MIPS32
SDC1 Store Doubleword to Floating Point MIPS32
SWC1 Store Word to Floating Point MIPS32

Table 5-14 FPU Move To and From Instructions

Mnemonic Instruction Defined in MIPS ISA
CFC1 Move Control Word From Floating Point MIPS32
CTC1 Move Control Word To Floating Point MIPS32
MFC1 Move Word From Floating Point MIPS32
MTC1 Move Word To Floating Point MIPS32

5.9.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating point arithmetic operations meet
the IEEE standard specification for accuracy—a result is identical to an infinite-precision result that has been rounded
to the specified format, using the current rounding mode. The rounded result differs from the exact result by less than
one unit in the least-significant place (ULP).

FPU IEEE-approximate arithmetic operations are listed in Table 5-15.
Table 5-15 FPU IEEE Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA
ABS.fmt Floating Point Absolute Value MIPS32
ADD.fmt Floating Point Add MIPS32

C.cond.fmt Floating Point Compare MIPS32
DIV.fmt Floating Point Divide MIPS32
MUL.fmt Floating Point Multiply MIPS32
NEG.fmt Floating Point Negate MIPS32
SQRT.fmt Floating Point Square Root MIPS32
SUB.fmt Floating Point Subtract MIPS32

5.9.3 Conversion Instructions

These instructions perform conversions between floating point and fixed point data types. Each instruction converts
values from a number of operand formats to a particular result format. Some conversion instructions use the rounding

56 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.9 FPU Instructions

mode specified in theloating Control/Statusegister FCSR, while others specify the rounding mode directly. Table
5-16 and Table 5-17 list the FPU conversion instructions according to their rounding mode.

Table 5-16 FPU Conversion Operations Using thECSR Rounding Mode

Mnemonic Instruction Defined in MIPS ISA
CVT.D.fmt Floating Point Convert to Double Floating Point MIPS32
CVT.S.fmt Floating Point Convert to Single Floating Point MIPS32
CVT.W.fmt Floating Point Convert to Word Fixed Point MIPS32

Table 5-17 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction Defined in MIPS ISA
CEIL.W.fmt Floating Point Ceiling to Word Fixed Point MIPS32
FLOOR.W.fmt Floating Point Floor to Word Fixed Point MIPS32
ROUND.W.fmt Floating Point Round to Word Fixed Point MIPS32
TRUNC.W.fmt Floating Point Truncate to Word Fixed Point MIPS32

5.9.4 Formatted Operand-Value Move Instructions

These instructions all move formatted operand values among FPU general registers. A particular operand type must be
moved by the instruction that handles that type. There are three kinds of move instructions:

» Unconditional move

» Conditional move that tests an FPU true/false condition code

» Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in a way that may be unexpected. They always force the value in the destination
register to become avalue of the format specified in the instruction. If the destination register does not contain an operand
of the specified format before the conditional move is executed, the contents become undefined. (For more information,
see the individual descriptions of the conditional move instructions in Volume 11.)

These instructions are listed in Tables Table 5-18 through Table 5-20.

Table 5-18 FPU Formatted Operand Move Instructions

Mnemonic Instruction Defined in MIPS ISA
MOV.fmt Floating Point Move MIPS32
Table 5-19 FPU Conditional Move on True/False Instructions
Mnemonic Instruction Defined in MIPS ISA
MOVF.fmt Floating Point Move Conditional on FP False MIPS32
MOVT.fmt Floating Point Move Conditional on FP True MIPS32

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

57

Chapter 5 Overview of the FPU Instruction Set

Table 5-20 FPU Conditional Move on Zero/Nonzero Instructions

Mnemonic Instruction Defined in MIPS ISA
MOVN.fmt Floating Point Move Conditional on Nonzero MIPS32
MOVZ.fmt Floating Point Move Conditional on Zero MIPS32

5.9.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instructions
(C.cond.fmt).

All branches have an architectural delay of one instruction. When a branch is taken, the instruction immediately
following the branch instruction is said to be in theanch delay slot and it is executed before the branch to the target
instruction takes place. Conditional branches come in two versions, depending upon how they handle an instruction in
the delay slot when the branch is not taken and execution falls through:

» Branch instructions execute the instruction in the delay slot.
» Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said to
nullify the instruction in the delay slot).

Although the Branch Likely instructions are included in this specification, software is strongly encouraged to
avoid the use of the Branch Likely instructions, as they will be removed from a future revision of the MIPS
Architecture.

The MIPS32 Architecture defines eight condition codes for use in compare and branch instructions. For backward
compatibility with previous revision of the ISA, condition code bit 0 and condition code bits 1 thru 7 are in discontiguous
fields inFCSR

Table 5-21 lists the conditional branch (branch and branch likely) FPU instructions; Table 5-22 lists the deprecated
conditional branch likely instructions.

Table 5-21 FPU Conditional Branch Instructions

Mnemonic Instruction Defined in MIPS
ISA
BC1F Branch on FP False MIPS32
BCI1T Branch on FP True MIPS32

Table 5-22 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction Defined in MIPS
ISA
BC1FL Branch on FP False Likely MIPS32
BC1TL Branch on FP True Likely MIPS32

58 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.10 Valid Operands for FPU Instructions

5.9.6 Miscellaneous Instructions

The MIPS ISA defines various miscellaneous instructions that conditionally move one CPU general register to another,
based on an FPU condition code.Table 5-23 lists these conditional move instructions.

Table 5-23 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction Defined in MIPS ISA
MOVN Move Conditional on FP False MIPS32
MQOvZ Move Conditional on FP True MIPS32

5.10 Valid Operands for FPU Instructions

The floating point unit arithmetic, conversion, and operand move instructions operate on formatted values with different
precision and range limits and produce formatted values for results. Each representable value in each format has a binary
encoding that is read from or stored to memory. Trhefield of the instruction encodes the operand format required for

the instruction. A conversion instruction specifies the result type iiutlstionfield; the result of other operations is

given in the same format as the operands. The encodingsfofttiret3field are shown in Table 5-24.

Table 5-24 FPU Operand Format Field i{mt) Encoding

fmt Instruction Size Data Type
Mnemonic -
Name Bits
0-15 Reserved
16 S single 32 Floating point
17 D double 64 Floating point
18-19 Reserved
20 W word 32 Fixed point
21 Reserved
22-31 Reserved

The result of an instruction using operand formats makkéud Table 5-24 is not currently specified by this architecture

and causes an exception. They are being held for future extensions to the architecture. The exact exception mechanism
used is processor specific. Most implementations report this as an Unimplemented Operation for a Floating Point
exception, although some implementations report these combinations as Reserved Instruction exceptions.

In Table 5-25, the result of an instruction using operand formats mawkedinvalid and an attempt to execute such an
instruction has an undefined result.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 59

Chapter 5 Overview of the FPU Instruction Set

Table 5-25 Valid Formats for FPU Operations

Mnemonic Operation Operand Fmt COP1
- Function
Float | Fixed Value
S|D| WL

ABS Absolute value e | |U|[U 5
ADD Add e | |U|U 0
C.cond Floating Point compare e | |JU]|U 48-63
CEILW Convert to word fixed point, round towareb + e | e 0] 14
CVT.D Convert to double floating point L I T I 33
CVT.S Convert to single floating point o | e | . 32
CVT.W Convert to 32-bit fixed point o | e 0] 36
DIV Divide e | |UJU 3
FLOOR.W Convert to word fixed point, round towasd - e | e 0] 15
MOV Move Register e | e 0] 6
MOVvC FP Move conditional on condition L B 17
MOVN FP Move conditional on GR&ero o | o | i 19
MOvz FP Move conditional on GPR=zero o | o | i 18
MSUB Multiply-Subtract e | |U|[U
MUL Multiply e | |U]|U 2
NEG Negate e | |U|U 7
ROUND.W Convert to word fixed point, round to nearest/evens | i i 12
SQRT Square Root e | |U|U 4
SuUB Subtract e | |U|[U 1
TRUNC.W Convert to word fixed point, round toward zero | « | ¢ | i | i 13
Key: ¢ = Valid. U — Unimplemented or Reservad-: Invalid.

5.11 FPU Instruction Formats

60

An FPU instruction is a single 32-bit aligned word. FP instruction formats are shown in Figures 5-10 through 5-23.

In these figures, variables are labelled in lowercase, suofiset Constants are labelled in uppercase, as are numerals.
Following these figures, Table 5-26 explains the fields used in the instruction layouts. Note that the same field may have
different names in different instruction layouts.

The field name is mnemonic to the function of that field in the instruction layout. The opcode tables and the instruction

encode discussion use the canonical field nam@sode fmt, nd, tf, andfunction The remaining fields are not used for
instruction encode.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

5.11 FPU Instruction Formats

5.11.1 Implementation Note

When present, the destination FPR specifier may be ifis, ther fd field.
Figure 5-10 I-Type (Immediate) FPU Instruction Format

31 26 25 21 20 16 15 0
opcode base ‘ ft ‘ offset
6 5 5 16
Immediate: Load/Store using register + offset addressing

Figure 5-11 R-Type (Register) FPU Instruction Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt | ft | fs fd function
6 5 5 5 5 6
Register: Two-register and Three-register formatted arithmetic operations

Figure 5-12 Register-Immediate FPU Instruction Format

31 26 25 21 20 16 15 11 0
COP1 sub rt fs 0
6 5 5 5 11
Register Immediate: Data transfer, CRUFPU register

Figure 5-13 Condition Code, Immediate FPU Instruction Format

31 26 25 21 20 18 17 16 15 0
COP1 BCC1 | cc |nd|ff | offset
6 5 3 11 16
Condition Code, Immediate: Conditional branches on FPU cc using PC + offset

Figure 5-14 Formatted FPU Compare Instruction Format

31 26 25 21 20 16 15 11 10 8 7 6 5 0
COP1 fmt ft fs ‘ cc ‘ 0 ‘ function
6 5 5 5 3 2 6

Register to Condition Code: Formatted FP compare
Figure 5-15 FP RegisterMove, Conditional Instruction Format

31 26 25 21 20 18 17 16 15 11 10 6 5 0
coP1 fmt | cc o] fs fd MOVCF
6 5 3 11 5 5 6
Condition Code, Register FP: FPU register move-conditional on FP, cc

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 61

Chapter 5 Overview of the FPU Instruction Set

Figure 5-16 Condition Code, Register Integer FPU Instruction Format

31 26 25 21 20 18 17 16 15 11 10 6 5 0
SPECIAL rs | cc o] rd 0 MOVCI
6 5 3 11 5 5 6
Condition Code, Register Integer: CPU register move-conditional on FP, cc

Table 5-26 FPU Instruction Format Fields

Field Description
BC1 Branch Conditional instruction subcode (op=COP1).
base CPU register: base address for address calculations.
COP1 Coprocessor 1 primamypcodevalue inop field.
cc Condition Codespecifier; for architectural levels prior to MIPS IV, this must be set to zerq.
fd FPU register: destination (arithmetic, loads, move-to) or source (stores, move-from).
fmt Destination and/or operand tyderfmaf) specifier.
fr FPU register: source.
fs FPU register: source.
ft FPU register: source (for stores, arithmetic) or destination (for loads).
function Field specifying a function within a particulap operation code.
index CPU register that holds the index address component for address calculations.
MOVC Value infunctionfield for a conditional move. There is one value for the instruction when
op=COP1, another value for the instruction wiogarSPECIAL.
nd Nullify delay. If set, the branch is Likely, and the delay slot instruction is not executed.
offset Signedoffsetfield used in address calculations.
op Primary operation code (see COP1, COP1X, LWC1, SWC1, LDC1, SDC1, SPECIAL).
rd CPU register: destination.
rs CPU register: source.
rt CPU register: can be either source or destination.
SPECIAL SPECIAlprimaryopcodevalue inop field.
sub Operation subcode field for COP1 register immediate-mode instructions.
tf True/False. The condition from an FP compare that is tested for equality withvithe

62 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

Appendix A

|

Instruction Bit Encodings

A.1 Instruction Encodings and Instruction Classes

Instruction encodings are presented in this section; field names are printed here and throughout thtalmsok in

When encoding an instruction, the primapcodefield is encoded first. Mosipcodevalues completely specify an
instruction that has ammediatevalue or offset.

Opcodevalues that do not specify an instruction instead specify an instruction class. Instructions within a class are
further specified by values in other fields. For instaopepdeREGIMM specifies themmediatenstruction class,
which includes conditional branch and tiapmediateinstructions.

A.2 Instruction Bit Encoding Tables

This section provides various bit encoding tables for the instructions of the MIPS32 ISA.

Figure A-1shows a sample encoding table and the instrudjmodefield this table encodes. Bits 31..29 of ihygcode

field are listed in the leftmost columns of the table. Bits 28..26 afpgbedefield are listed along the topmost rows of

the table. Both decimal and binary values are given, with the first three bits designating the row, and the last three bits
designating the column.

An instruction’s encoding is found at the intersection of a row (bits 31..29) and column (bits 28..26) value. For instance,

theopcodevalue for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Similarly, the
opcodevalue for EX2 is 64 (decimal), or 110100 (binary).

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 63

Appendix A Instruction Bit Encodings

31

26 25

21 20 16 15

opcode

rs rt immediate

/L

bits 28..26

=

Decimal encoding of

opcode

6

16

Binary encoding of
opcode (28..26)

Decimal encoding of

opcode (28..26)

bits 31..29

0

000

4
111

001 010 011 100 101 110

0

000

001

010

011

EX1

100

101

ol h|[WIN|F

110

EX2

111
2.

opcode (31..29)

Binary encoding of
opcode (31..29)

Figure A-1 Sample Bit Encoding Table

TablesA-2 through A-15 describe the encoding used for the MIPS32T&le A-1describes the meaning of the
symbols used in the tables.

64

Table A-1 Symbols Used in the Instruction Encoding Tables

Symbol

Meaning

O

Operation or field codes marked with this symbol are reserved for future use. Executing §
instruction must cause a Reserved Instruction Exception.

uch an

(Also italic field name.) Operation or field codes marked with this symbol denotes a field g
The instruction word must be further decoded by examining additional tables that show valu
another instruction field.

lass.
es for

Operation or field codes marked with this symbol represent a valid encoding for a higher-
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Except

brder
on.

Operation or field codes marked with this symbol are available to licensed MIPS partners
avoid multiple conflicting instruction definitions, the partner must notify MIPS Technologies,
when one of these encodings is used. If no instruction is encoded with this value, executin
an instruction must cause a Reserved Instruction Exce@BRCIALZ2ncodings or coprocessg
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Un
Exception (coprocessor instruction encodings for a coprocessor to which access is not al

To
Inc.
j such
.
usable
owed).

Field codes marked with this symbol represent an EJTAG support instruction and implemen
of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encodi
implemented, it must match the instruction encoding as shown in the table.

tation

ng is

Operation or field codes marked with this symbol are reserved for MIPS Application Speg
Extensions. If the ASE is not implemented, executing such an instruction must cause a Re

ific
served

Instruction Exception.

MIPS32™ Architecture For Programmers Volume I, Revi

sion 0.95

A.2 Instruction Bit Encoding Tables

Table A-1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning
Operation or field codes marked with this symbol are obsolete and will be removed from a future
¢ revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

Table A-2 MIPS32 Encoding of the Opcode Field

opcode bits 28..26
0 1 2 3 4 5 6 7
bits 31..29 000 001 010 011 100 101 110 111
0 | 000 | SPECIALS | REGIMMS J JAL BEQ BNE BLEZ BGTZ
1| 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2| 010| COPO5 COP15 COP265 COP3685 BEQL @ BNEL @ BLEZL@ | BGTZL¢
3| 011 B B B B SPECIAL2S | JALX € £ *
4 | 100 LB LH LWL LW LBU LHU LWR B
5| 101 SB SH SWL SW B B SWR CACHE
6 | 110 LL Lwc1 LwcC26 PREF B LDC1 LDC26 B
7| 111 e Swc1 swca * B SDC1 SDC® B
Table A-3 MIPS32SPECIAL Opcode Encoding of Function Field
function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 SLL MOVCI3 SRL SRA SLLV * SRLV SRAV
1| oo1 JR JALR MOVZ MOVN SYSCALL BREAK * SYNC
2 | 010 MFHI MTHI MFLO MTLO B * B B
3| 011 MULT MULTU DIV DIVU B B B B
4 | 100 ADD ADDU SuB SUBU AND OR XOR NOR
5| 101 * * SLT SLTU B B B B
6 | 110 TGE TGEU TLT TLTU TEQ * TNE *
71111 B * B B B * B B
Table A-4 MIPS32REGIMM Encoding of rt Field
rt bits 18..16
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0| 00 BLTZ BGEZ BLTZL @ BGEZL ¢ * * * *
1| o1 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2| 10 BLTZAL BGEZAL | BLTZALL @ | BGEZALL ¢ * * * *
3 11 " " " " " " " "
Table A-5 MIPS32SPECIAL2 Encoding of Function Field
function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 MADD MADDU MUL ¢} MSUB MSUBU] ¢}
1| oo1 ¢}] 0 ¢} ¢} 0 0 ¢}
2 | 010 ¢}] 0 ¢} ¢} 0 0 ¢}
3| 011 ¢}] 0 ¢} ¢} 0 0 ¢}
4 | 100 CLz CLO 0 ¢} B B 0 ¢}
5| 101 ¢}] 0 ¢} ¢} 0 0 ¢}
6 | 110 ¢}] 0 ¢} ¢} 0 0 ¢}
7| 111 ¢}] 0 ¢} ¢} 0 0 SDBBPG

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

65

Appendix A Instruction Bit Encodings

66

Table A-6 MIPS32MOVCI Encoding of tf Bit

tf bit 16
0 1
MOVF MOVT

Table A-7 MIPS32COPzEncoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| oo MFCz B CFCz * MTCz B CTCz *
1| o1 BCz3 * * * * * *
2| 10
3| 11 cos
Table A-8 MIPS32 COPz Encoding of rt Field When rsB8Cz
rt bits 16
bit 17 0 1
0 BCzF BCzT
1 BCzFLo BCzTL @
Table A-9 MIPS32COPOEnNcoding of rs Field
rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| oo MFCO B * * MTCO B * *
1 01 * * * * * * *
2| 10
3 11 CO»d
Table A-10 MIPS32COPOENcoding of Function Field When rs€0O
function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 * TLBR TLBWI * * TLBWR *
1| ool TLBP * * * * * *
2 010 * * * * * * *
3| 011 ERET * * * * * DERET o
4 | 100 WAIT * * * * * *
5 101 * * * * * * *
6 110 * * * * * * *
7 111 * * * * * * *
Table A-11 MIPS32COP1Encoding of rs Field
rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFC1 B CFC1 * MTC1 B CcTC1 *
1| 01 BC1d € e * * * * *
2] 10 Sd D3 * * wd B B *
3 11 * * * * * * * *

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

A.2 Instruction Bit Encoding Tables

Table A-12 MIPS32COP1Encoding of Function Field When rs$

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 ADD suB MUL DIV SQRT ABS MOV NEG
1| 001 B B B B ROUND.W | TRUNC.W CEILW FLOOR.W
2| 010 * MOVCF3 MovZz MOVN * B B *
3| 011 * * * * € € € €
4 | 100 * CVT.D * * CVT.W B B *
5 101 * * * * * * * *

6 | 110 CF C.UN C.EQ C.UEQ C.OLT C.uLT C.OLE C.ULE
7] 111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
Table A-13 MIPS32COP1Encoding of Function Field When rsD

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 ADD SuB MUL DIV SQRT ABS MOV NEG
1| oo1 B B B B ROUND.W | TRUNC.W CEILW FLOOR.W
2| 010 * MOVCF3 MOVZ MOVN * B B *
3| 011 * * * * € € € €
4 | 100 CVT.S * * * CVT.W B * *
5 101 * * * * * * * *

6 | 110 C.F C.UN C.EQ C.UEQ C.oLT C.uLT C.OLE C.ULE
7] 111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
Table A-14 MIPS32COP1Encoding of Function Field When rs3V

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
O 000 * * * * * * * *
1 001 * * * * * * * *
2 010 * * * * * * * *
3 011 * * * * * * * *
4| 100 CVT.S CVT.D * * * * € *
5 101 * * * * * * * *
6 110 * * * * * * * *
7 111 * * * * * * * *

Table A-15 MIPS32COP1Encoding of tf Bit When rs=S, D, or PSFunction=MOVCF

tf bit 16
0 1
MOVE.fmt | MOVT.fmt

MIPS32™ Architecture For Programmers Volume I, Revision 0.95

67

Appendix A Instruction Bit Encodings

68 MIPS32™ Architecture For Programmers Volume I, Revision 0.95

Appendix B

Revision History

Revision Date

Description

0.95 March 12, 2001

External review copy of reorganized and updated architecture documentation.

MIPS32™ Architecture For Programmers Volume I, Revision 0.95 69

	MIPS32™ Architecture For Programmers Volume�I: Introduction to the MIPS32™ Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	The MIPS Architecture: An Introduction
	2.1� MIPS32 and MIPS64 Overview
	2.1.1� Historical Perspective

	2.2� Architectural Changes Relative to the MIPS I through MIPS V Architectures
	2.2.1� MIPS Instruction Set Architecture (ISA)
	2.2.2� MIPS Privileged Resource Architecture (PRA)
	2.2.3� MIPS Application Specific Extensions (ASEs)
	2.2.4� MIPS User Defined Instructions (UDIs)

	2.3� Architecture Versus Implementation
	2.4� Relationship between the MIPS32 and MIPS64 Architectures
	2.5� Instructions, Sorted by ISA
	2.5.1� List of MIPS32 Instructions
	2.5.2� List of MIPS64 Instructions

	2.6� Pipeline Architecture
	2.6.1� Pipeline Stages and Execution Rates
	2.6.2� Parallel Pipeline
	2.6.3� Superpipeline
	2.6.4� Superscalar Pipeline

	2.7� Load/Store Architecture
	2.8� Programming Model
	2.8.1� CPU Data Formats
	2.8.2� FPU Data Formats
	2.8.3� Coprocessors (CP0-CP3)
	2.8.4� CPU Registers
	2.8.4.1� CPU General-Purpose Registers
	2.8.4.2� CPU Special-Purpose Registers

	2.8.5� FPU Registers
	2.8.6� Byte Ordering and Endianness
	2.8.6.1� Big-Endian Order
	2.8.6.2� Little-Endian Order
	2.8.6.3� MIPS Bit Endianness
	2.8.6.4� Addressing Alignment Constraints
	2.8.6.5� Unaligned Loads and Stores

	2.8.7� Memory Access Types
	2.8.7.1� Uncached Memory Access
	2.8.7.2� Cached Memory Access

	2.8.8� Implementation-Specific Access Types
	2.8.9� Cache Coherence Algorithms and Access Types
	2.8.10� Mixing Access Types

	Application Specific Extensions
	3.1� Description of ASEs
	3.2� List of Application Specific Instructions
	3.2.1� The MIPS16 Application Specific Extension to the MIPS32Architecture
	3.2.2� The MDMX Application Specific Extension to the MIPS64 Architecture
	3.2.3� The MIPS-3D Application Specific Extension to the MIPS64 Architecture
	3.2.4� The SmartMIPS Application Specific Extension to the MIPS32 Architecture

	Overview of the CPU Instruction Set
	4.1� CPU Instructions, Grouped By Function
	4.1.1� CPU Load and Store Instructions
	4.1.1.1� Types of Loads and Stores
	4.1.1.2� Load and Store Access Types
	4.1.1.3� List of CPU Load and Store Instructions
	4.1.1.4� Loads and Stores Used for Atomic Updates
	4.1.1.5� Coprocessor Loads and Stores

	4.1.2� Computational Instructions
	4.1.2.1� ALU Immediate and Three-Operand Instructions
	4.1.2.2� ALU Two-Operand Instructions
	4.1.2.3� Shift Instructions
	4.1.2.4� Multiply and Divide Instructions

	4.1.3� Jump and Branch Instructions
	4.1.3.1� Types of Jump and Branch Instructions Defined by the ISA
	4.1.3.2� Branch Delays and the Branch Delay Slot
	4.1.3.3� Branch and Branch Likely
	4.1.3.4� List of Jump and Branch Instructions

	4.1.4� Miscellaneous Instructions
	4.1.4.1� Instruction Serialization (SYNC)
	4.1.4.2� Exception Instructions
	4.1.4.3� Conditional Move Instructions
	4.1.4.4� Prefetch Instructions
	4.1.4.5� NOP Instructions

	4.1.5� Coprocessor Instructions
	4.1.5.1� What Coprocessors Do
	4.1.5.2� System Control Coprocessor 0 (CP0)
	4.1.5.3� Floating Point Coprocessor 1 (CP1)
	4.1.5.4� Coprocessor Load and Store Instructions

	4.2� CPU Instruction Formats

	Overview of the FPU Instruction Set
	5.1� Binary Compatibility
	5.2� Enabling the Floating Point Coprocessor
	5.3� IEEE Standard 754
	5.4� FPU Data Types
	5.4.1� Floating Point Formats
	5.4.1.1� Normalized and Denormalized Numbers
	5.4.1.2� Reserved Operand Values—Infinity and NaN
	5.4.1.3� Infinity and Beyond
	5.4.1.4� Signalling Non-Number (SNaN)
	5.4.1.5� Quiet Non-Number (QNaN)

	5.5� Floating Point Register Types
	5.5.1� FPRs and Formatted Operand Layout

	5.6� Floating Point Control Registers (FCRs)
	5.6.1� Floating Point Implementation Register (FCCR, CP1 Control Register 0)
	5.6.2� Floating Point Control and Status Register (FCSR, CP1 Control Register 31)
	5.6.3� Floating Point Condition Codes Register (FCCR, CP1 Control Register 25)
	5.6.4� Floating Point Exceptions Register (FEXR, CP1 Control Register 26)
	5.6.5� Floating Point Enables Register (FENR, CP1 Control Register 28)

	5.7� Formats of Values Used in FP Registers
	5.8� FPU Exceptions
	5.8.0.1� Precise Exception Mode
	5.8.1� Exception Conditions
	5.8.1.1� Invalid Operation Exception
	5.8.1.2� Division By Zero Exception
	5.8.1.3� Underflow Exception
	5.8.1.4� Overflow Exception
	5.8.1.5� Inexact Exception
	5.8.1.6� Unimplemented Operation Exception

	5.9� FPU Instructions
	5.9.1� Data Transfer Instructions
	5.9.1.1� Data Alignment in Loads, Stores, and Moves
	5.9.1.2� Addressing Used in Data Transfer Instructions

	5.9.2� Arithmetic Instructions
	5.9.3� Conversion Instructions
	5.9.4� Formatted Operand-Value Move Instructions
	5.9.5� Conditional Branch Instructions
	5.9.6� Miscellaneous Instructions

	5.10� Valid Operands for FPU Instructions
	5.11� FPU Instruction Formats
	5.11.1� Implementation Note

	Instruction Bit Encodings
	A.1� Instruction Encodings and Instruction Classes
	A.2� Instruction Bit Encoding Tables

	Revision History

