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The MIPS32 4Kc™ core from MIPS® Technologies is a member of MIPS32 4K™ processor core family. It is a hi
performance, low-power, 32-bit MIPS RISC core designed for custom system-on-silicon applications. The core is de
for semiconductor manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate the
custom logic and peripherals with a high-performance RISC processor. It is highly portable across processes, and
easily integrated into full system-on-silicon designs, allowing developers to focus their attention on end-user produc
4Kc™ core is ideally positioned to support new products for emerging segments of the digital consumer, network, sy
and information management markets, enabling new tailored solutions for embedded applications.

The 4Kc core implements the MIPS32™ Architecture and contains all MIPS II™ instructions, special multiply-
accumulate(MAC), conditional move, prefetch, wait, leading zero/one detect instructions, and the 32-bit privileged
resource architecture. The R4000®-style memory management unit contains 3-entry instruction and data TLBs (I
DTLB) and a 16 dual-entry joint TLB (JTLB) with variable page sizes.

The synthesizable 4Kc core implements single cycle MAC instructions, which enable DSP algorithms to be perfo
efficiently. The Multiply Divide Unit (MDU) allows 32-bit x 16-bit MAC instructions to be issued every cycle. A 32-bit
32-bit MAC instruction can be issued every 2 cycles.

Instruction and data caches are fully configurable from 0 - 16 Kbytes in size. In addition, each cache can be orga
direct-mapped, 2-way, 3-way or 4-way set associative. Load and fetch cache misses only block until the critical w
becomes available. The pipeline resumes execution while the remaining words are being written to the cache. Both
are virtually indexed and physically tagged to allow the cache to be accessed in the same clock that the address is tr

An optional Enhanced JTAG (EJTAG) block allows for single-stepping of the processor as well as instruction and 
virtual address breakpoints.

Figure 1 shows a block diagram of the 4Kc core. The core is divided intorequired andoptional blocks as shown.

Figure 1. 4Kc Core Block Diagram
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Features

• 32-bit Address and Data Paths

• MIPS32 Compatible Instruction Set

– All MIPS II Instructions
– Multiply-Accumulate and Multiply-Subtract

Instructions (MADD, MADDU, MSUB, MSUBU)
– Targeted Multiply Instruction (MUL)
– Zero/One Detect Instructions (CLZ, CLO)
– Wait Instruction (WAIT)
– Conditional Move Instructions (MOVZ, MOVN)
– Prefetch Instruction (PREF)

• Programmable Cache Sizes

– Individually configurable instruction and data caches
– Sizes from 0 - 16KB
– Direct Mapped, 2-, 3-, or 4-Way Set Associative
– Loads block only until critical word is available
– Write-through, no write-allocate
– 16-byte cache line size, word sectored
– Virtually indexed, physically tagged
– Cache line locking support
– Non-blocking prefetches

• ScratchPad RAM support

– Can optionally replace 1 way of the I and/or D cache
with a fast scratchpad RAM.

– 20b of index address allows accessing of arrays up to
1MB

– Memory mapped registers attached to the scratchpad
port can be used as a coprocessor interface.

• R4000-style privileged resource architecture

– Count/Compare registers for real-time timer
interrupts

– I and D watch registers for SW breakpoints
– Separate interrupt exception vector

• Programmable Memory Management Unit

– 16 dual-entry R4000 style JTLB with variable page
size

– 3 entry ITLB
– 3 entry DTLB

• Simple Bus Interface Unit (BIU)

– All I/O’s fully registered
– Separate unidirectional 32-bit address and data buses
– Two 16-byte collapsing write buffers

• Multiply/Divide Unit

– Max issue rate of one 32x16 multiply per clock
– Max issue rate of one 32x32 multiply every other

clock
– Early in iterative divide. Min. 11, Max. 34 clock

latency (dividend (rs) sign extention-dependent)

• Power Control

– Minimum frequency: 0 MHz
– Power down mode (triggered by WAIT instruction)
– Support for software controlled clock divider

• EJTAG Debug Support with single stepping,
virtual instruction and data address breakpoints.

Architectural Overview

The 4Kc core contains both required and optional block
Required blocks are the lightly-shaded areas of the bloc
diagram and must be implemented to remain MIPS-
compliant. Optional blocks can be added to the 4Kc cor
based on the needs of the implementation.

The required blocks are as follows:

• Execution Unit

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Transition Lookaside Buffer (TLB)

• Cache Controllers

• Bus Interface Unit (BIU)

• Power Management

Optional blocks include:

• Instruction Cache

• Data Cache

• ScratchPad RAM

• Enhanced JTAG (EJTAG) Controller

The “4Kc Core Required Logic Blocks” section below
discusses the required blocks. The “4Kc Core Optional
Logic Blocks” section discusses the optional blocks.

Pipeline Flow

The 4Kc core implements a 5-stage pipeline with
performance similar to the R3000 pipeline. The pipeline
allows the processor to achieve high frequency while
minimizing device complexity, reducing both cost and
power consumption.

The 4Kc core pipeline consists of five stages:

• Instruction (I Stage)

• Execution (E Stage)
2 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.03
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• Memory (M Stage)

• Align (A Stage)

• Writeback (W stage)

The 4Kc core implements a bypass mechanism that allows
the result of an operation to be forwarded directly to the
instruction that needs it without having to write the result
to the register and then read it back.

Figure 2 shows a timing diagram of the 4Kc core pipeline.

Figure 2 4Kc Core Pipeline

I Stage: Instruction Fetch

During the Instruction fetch stage:

• An instruction is fetched from instruction cache.

E Stage: Execution

During the Execution stage:

• Operands are fetched from register file.

• The arithmetic logic unit (ALU) begins the
arithmetic or logical operation for register-to-
register instructions.

• The ALU calculates the data virtual address for
load and store instructions.

• The ALU determines whether the branch condition
is true and calculates the virtual branch target
address for branch instructions.

• Instruction logic selects an instruction address

• All multiply and divide operations begin in this
stage.

M Stage: Memory Fetch

During the memory fetch stage:

• The arithmetic ALU operation completes.

• The data cache fetch and the data virtual-to-
physical address translation are performed for loa
and store instructions.

• Data cache lookup is performed and a hit/miss
determination is made.

• A 16x16 or 32x16 multiply calculation completes.

• A 32x32 multiply operation stalls for one clock in
the M-stage.

• A divide operation stalls for a maximum of 34
clocks in the M stage. Early in sign extention
detection on the dividend will skip 7, 15 or 23
stall clocks.

A Stage: Align

During the Align stage:

• A separate aligner aligns load data to its word
boundary.

• A 16x16 or 32x16 multiply operation performs the
carry-propagate-add. The actual register writebac
is performed in the W stage.

• A MUL operation makes the result available for
writeback. The actual register writeback is
performed in the W stage.

W Stage: Writeback

• For register-to-register or load instructions, the
instruction result is written back to the register file
during the W stage.

4Kc Core Required Logic Blocks

The 4Kc core consists of the following required logic
blocks as shown in Figure 1. These logic blocks are defin
in the following subsections:

• Execution Unit

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Transition Lookaside Buffer (TLB)

• Cache Controller

• Bus Interface Control (BIU)
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• Power Management

Execution Unit

The 4Kc core execution unit implements a load/store
architecture with single-cycle ALU operations (logical,
shift, add, subtract) and an autonomous multiply/divide
unit. The 4Kc core contains thirty-two 32-bit general-
purpose registers used for integer operations and address
calculation. The register file consists of two read ports and
one write port and is fully bypassed to minimize operation
latency in the pipeline.

 The execution unit includes:

• 32-bit adder used for calculating the data address

• Address unit for calculating the next instruction
address

• Logic for branch determination and branch target
address calculation

• Load aligner

• Bypass multiplexers used to avoid stalls when
executing instructions streams where data
producing instructions are followed closely by
consumers of their results.

• Leading Zero/One detect unit for implementing the
CLZ and CLO instructions

• Arithmetic Logic Unit (ALU) for performing
bitwise logical operations

• Shifter & Store Aligner

Multiply/Divide Unit (MDU)

The 4Kc core contains a multiply/divide unit (MDU) that
contains a separate pipeline for multiply and divide
operations. This pipeline operates in parallel with the
integer unit (IU) pipeline and does not stall when the IU
pipeline stalls. This allows long-running MDU operations,
such as a divide, to be partially masked by system stalls
and/or other integer unit instructions.

The MDU consists of a 32x16 booth recoded multiplier,
result/accumulation registers (HI and LO), a divide state
machine, and all necessary multiplexers and control logic.
The first number shown (‘32’ of 32x16) represents thers
operand. The second number (‘16’ of 32x16) represents the
rt operand. The 4Kc core only checks the value of the latter
(rt) operand to determine how many times the operation
must pass through the multiplier. The 16x16 and 32x16

operations pass through the multiplier once. A 32x32
operation passes through the multiplier twice.

The MDU supports execution of a 16x16 or 32x16
multiply operation every clock cycle; 32x32 multiply
operations can be issued every other clock cycle.
Appropriate interlocks are implemented to stall the issue
back-to-back 32x32 multiply operations. Multiply operand
size is automatically determined by logic built into the
MDU.

Divide operations are implemented with a simple 1 bit pe
clock iterative algorithm. An early in detecion checks th
sign extention of the dividend (rs) operand. If rs is only 8
bit - 23 iteration will be skipped. For 16 bit rs - 15 iterations
are skipped and for 24 bit rs - 7 iterations are skipped. An
attempt to issue a subsequent MDU instruction while a
divide is still active causes an IU pipeline stall until the
divide operation is completed.

Table 1 lists the repeat rate (peak issue rate of cycles un
the operation can be reissued) and latency (number of
cycles until a result is available) for the 4Kc core multiply
and divide instructions. The approximate latency and
repeat rates are listed in terms of pipeline clocks. For a
more detailed discussion of latencies and repeat rates, re
to Chapter 2 of the MIPS32 4K™ Processor Core Fami
Software Users Manual.

The MIPS architecture defines that the results of a multip
or divide operation be placed in the HI and LO registers
Using the move-from-HI (MFHI) and move-from-LO

Table 1. 4Kc Core Integer Multiply/Divide Unit Latencies
and Repeat Rates

Opcode Operand
Size

(mul rt )
(div rs)

Latency Repeat
Rate

MULT/MULTU,

MADD/MADDU,

MSUB/MSUBU

16 bit 1 1

32 bit 2 2

MUL 16 bit 2 1

32 bit 3 2

DIV/DIVU 8 bit 12 11

16 bit 19 18

24 bit 26 25

32 bit 33 32
4 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.03



4Kc Core Required Logic Blocks
(MFLO) instructions, these values can be transferred to the
general purpose register file.

As an enhancement to the MIPS II ISA, the 4Kc core
implements an additional multiply instruction, MUL,
which specifies that multiply results be placed in the
primary register file instead of the HI/LO register pair. By
avoiding the explicit MFLO instruction, required when
using the LO register, and by supporting multiple
destination registers, the throughput of multiply-intensive
operations is increased.

Two other instructions, multiply-add (MADD) and
multiply-subtract (MSUB), are used to perform the
multiply-accumulate and multiply-subtract operations.
The MADD instruction multiplies two numbers and then
adds the product to the current contents of the HI and LO
registers. Similarly, the MSUB instruction multiplies two
operands and then subtracts the product from the HI and
LO registers. The MADD and MSUB operations are
commonly used in DSP algorithms.

System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the
virtual-to-physical address translation and cache protocols,
the exception control system, the processor’s diagnostics
capability, and the operating modes (kernel, user, and
debug), interrupts enabled or disabled. Configuration
information such as cache size and set associativity is
available by accessing the CP0 registers.

Table 2. Coprocessor 0 Registers in Numerical Order

Register
Number

Register
Name

Function

0 Index1 Index into the TLB array.

1 Random1 Reserved in the Randomly
generated index into the TLB
array.

2 EntryLo01 Reserved in the .Randomly
generated index into the TLB
array.

3 EntryLo11 Low-order portion of the TLB
entry for odd-numbered virtual
pages.

4 Context2 Pointer to page table entry in
memory.

5 PageMask1 Control for variable page size in
TLB entries.

6 Wired1 Controls the number of fixed
(“wired”) TLB entries.

7 Reserved Reserved.

8 BadVAddr2 Reports the address for the most
recent address-related
exception.

9 Count2 Processor cycle count.

10 EntryHi1 High-order portion of the TLB
entry.

11 Compare2 Timer interrupt control.

12 Status2 Processor status and control.

13 Cause2 Cause of last general exception.

14 EPC2 Program counter at last
exception.

15 PRId Processor identification and
revision.

16 Config Configuration register.

16 Config1 Configuration register 1.

17 LLAddr Load linked address.

18 WatchLo2 Low-order watchpoint address.

19 WatchHi2 High-order watchpoint address.

20 - 22 Reserved Reserved.

23 Debug3 Debug control and exception
status.

24 DEPC3 Program counter at last debug
exception.

25 - 27 Reserved Reserved.

28 TagLo/
DataLo

Low-order portion of cache tag
interface.

29 Reserved Reserved.

30 ErrorEPC2 Program counter at last error.

31 DeSave3 Debug handler scratch pad
register.

1. Registers used in memory management.

2. Registers used in exception processing.

3. Registers used during debug.

Table 2. Coprocessor 0 Registers in Numerical Order

Register
Number

Register
Name

Function
MIPS32 4Kc™ Processor Core Datasheet, Revision 01.03 5
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Coprocessor 0 also contains the logic for identifying and
managing exceptions. Exceptions can be caused by a
variety of sources, including boundary cases in data,
external events, or program errors. Table 3 shows the
exception types in order of priority.

Modes of Operation

The 4Kc core supports three modes of operation: user
mode, kernel mode, and debug mode. User mode is mo
often used for applications programs. Kernel mode is
typically used for handling exceptions and operating
system kernel functions, including CP0 management an
O device accesses. An additional Debug mode is used
during system bringup and software development. Refer
the EJTAG section for more information on debug mode

Table 3. 4Kc Core Exception Types

Exception Description

Reset Assertion of SI_ColdReset signal.

Soft Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the
assertion of the external EJ_DINT
input, or by setting theEjtagBrk bit in
the ECR register.

NMI Assertion of EB_NMI signal.

Machine Check TLB write that conflicts with an exist-
ing entry.

Interrupt Assertion of unmasked HW or SW
interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM-
>!(K|DM) transition).

DIB EJTAG debug hardware instruction
break matched.

WATCH A reference to an address in one of the
watch registers (fetch).

AdEL Fetch address alignment error.

Fetch reference to protected address.

TLBL Fetch TLB miss.

TLBL Fetch TLB hit to page with V=0.

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of
SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

RI Execution of a Reserved Instruction.

CpU Execution of a coprocessor instruction
for a coprocessor that is not enabled.

Ov Execution of an arithmetic instruction
that overflowed.

Tr Execution of a trap (when trap condi-
tion is true).

DDBL / DDBS EJTAG Data Address Break (address
only) or EJTAG Data Value Break on
Store (address+value).

WATCH A reference to an address in one of the
watch registers (data).

AdEL Load address alignment error.

Load reference to protected address.

AdES Store address alignment error.

Store to protected address.

TLBL Load TLB miss.

TLBL Load TLB hit to page with V=0.

TLBS Store TLB miss.

TLBS Store TLB hit to page with V=0.

TLB Mod Store to TLB page with D=0.

DBE Load or store bus error.

DDBL EJTAG data hardware breakpoint
matched in load data compare.

Table 3. 4Kc Core Exception Types

Exception Description
6 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.03



4Kc Core Required Logic Blocks

d.

i

.

e

of
e

by
th
Figure 3  4Kc Core Virtual Address Map

Memory Management Unit (MMU)

The 4Kc core contains a fully functional MMU that
interfaces between the execution unit and the cache
controller. Although the 4Kc core implements a 32-bit
architecture, the MMU is modeled after that found in the
64-bit R4000 family.

The TLB consists of two address translation buffers; a 16
dual-entry fully associative Joint TLB (JTLB) and a two 3-
entry fully associative Instruction/Data TLB’s (ITLB/
DTLB).

When an instruction address is calculated, the virtual
address is compared to the contents of the 3 entry ITLB. If

the address is not found in the ITLB, the JTLB is accesse
If the entry is found in the JTLB, that entry is then written
into the ITLB. If the address is not found in the JTLB, a
TLB refill exception is taken.

When a data address is calculated, the virtual address 
compared to both the 3 entry DTLB and the JTLB. If the
address is not found in the DTLB, but found in the JTLB
That address is immediatly written to the DTLB. If the
address is not found in the JTLB, a TLB refill exception is
taken.

Figure 4 shows how the ITLB, DTLB and JTLB are
implemented in the 4Kc core.

Figure 4  Address Translation During a Cache Access

Translation Lookaside Buffer (TLB)

The TLB consists of three address translation buffers;

• 16 dual-entry fully associative Joint TLB (JTLB)

• 3-entry fully associative Instruction TLB (ITLB)

• 3-entry fully associative Data TLB (DTLB)

Joint TLB

The 4Kc core implements a 16 dual-entry, fully associativ
JTLB that maps 32 virtual pages to their corresponding
physical addresses. The JTLB is organized as 16 pairs 
even and odd entries containing pages that range in siz
from 4-Kbytes to 16-Mbytes into the 4-Gbyte physical
address space. The purpose of the TLB is to translate
virtual addresses and their corresponding ASID into a
physical memory address. The translation is performed
comparing the upper bits of the virtual address (along wi
the ASID) against each of the entries in thetag portion of
the joint TLB structure.
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The JTLB is organized in page pairs to minimize the
overall size. Eachtag entry corresponds to 2-data entries,
an even page entry and an odd page entry. The highest
order virtual address bit not participating in the tag
comparison is used to determine which of the data entries
is used. Since page size can vary on a page-pair basis, the
determination of which address bits participate in the
comparison and which bit is used to make the even-odd
determination is decided dynamically during the TLB
lookup.

Instruction TLB

The ITLB is a small 3-entry, fully associative TLB
dedicated to performing translations for the instruction
stream. The ITLB only maps 4-Kbyte pages/sub-pages.

The ITLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing store for the
ITLB. If a fetch address cannot be translated by the ITLB,
the JTLB is used to attempt to translate it in the following
clock cycle. If successful, the translation information is
copied into the ITLB for future use. There is a two cycle
ITLB miss penalty.

Data TLB

The DTLB is a small 3-entry, fully associative TLB
dedicated to performing translations for loads and stores.
The DTLB also only maps 4-Kbyte pages/sub-pages.

The DTLB is managed by hardware and is transparent 
software. The larger JTLB is used as a backing store for t
DTLB. The JTLB is looked up in parallel with the DTLB
to minimize the DTLB miss penalty. If the JTLB
translation is successful, the translation information is
copied into the DTLB for future use. There is a one cyc
DTLB miss penalty.

Virtual to Physical Address Translation

Converting a virtual address to a physical address begi
by comparing the virtual address from the processor wi
the virtual addresses in the TLB; there is a match when t
virtual page number (VPN) of the address is the same a
the VPN field of the entry, and either:

• The Global (G) bit of the TLB entry is set, or

• The ASID field of the virtual address is the same
as the ASID field of the TLB entry.

This match is referred to as a TLBhit. If there is no match,
a TLB miss exception is taken by the processor and
software is allowed to refill the TLB from a page table o
virtual/physical addresses in memory.

Figure 5 shows a flow diagram of the address translatio
process.

Figure 5. 32-bit Virtual Address Translation
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The top portion of Figure 5 shows a virtual address for a 4-
Kbyte page size. The width of theOffsetin Figure 5 is
defined by the page size. The remaining 20 bits of the
address represent the virtual page number (VPN), and
index the 1M-entry page table.

The bottom portion of Figure 5 shows the virtual address
for a 16-Mbyte page size. The remaining 8 bits of the
address represent the VPN, and index the 256-entry page
table.

In this figure the virtual address is extended with an 8-bit
address space identifier (ASID), which reduces the
frequency of TLB flushing during a context switch. This 8-
bit ASID contains the number assigned to that process and
is stored in the CP0EntryHi register.

Hits, Misses, and Multiple Matches

Each JTLB entry contains a tag portion and a data portion.
If a match is found, the upper bits of the virtual address are
replaced with the page frame number (PFN) stored in the
corresponding entry in the data array of the joint TLB
(JTLB). The granularity of JTLB mappings is defined in
terms of TLBpages. The 4Kc core JTLB supports pages of
different sizes ranging from 4 KB to 16 MB in powers of 4.

If no match occurs (TLB miss), an exception is taken and
software refills the TLB from the page table resident in
memory. Software can write over a selected TLB entry or
use a hardware mechanism to write into a random entry.

The 4Kc core implements a TLB write compare
mechanism to ensure that multiple TLB matches do not
occur. On the TLB write operation the write value is
compared with all other entries in the TLB. If a match
occurs the 4Kc core takes a machine check exception, sets
the TS bit in the CP0Status register, and aborts the write
operation.

Table 4 shows the address bits used for even/odd bank
selection depending on page size and the relationship
between the legal values in the mask register and the
selected page size.

TLB Tag and Data Formats

Figure 6 shows the format of a TLBtagentry. The entry is
divided into the follow fields:

• Global process indicator

• Address space identifier

• Virtual page number

• Compressed page mask

Setting the global process indicator (G bit) indicates tha
the entry is global to all processes and/or threads in the
system. In this case the 8-bit ASID value is ignored sinc
the entry is not relative to a specific thread or process.

The address space identifier (ASID) helps to reduce the
frequency of TLB flushing on a context switch. The
existence of the ASID allows multiple processes to exist
both the TLB and instruction caches. The current ASID
value is stored in theEntryHi register and is compared to
the ASID value of each entry. Figure 6 and Table 5 show
the TLB tag entry format. Figure 7 and Table 6 show the
TLB data array entry format.

Figure 6 TLB Tag Entry Format

Table 4. Mask and Page Size Values

Pagemask[24:13] Page Size Even/Odd Bank
Select Bit

000000000000 4KB VAddr[12]

000000000011 16KB VAddr[14]

000000001111 64KB VAddr[16]

000000111111 256KB VAddr[18]

000011111111 1MB VAddr[20]

001111111111 4MB VAddr[22]

111111111111 16MB VAddr[24]

Table 5. TLB Tag Entry Fields

Field Name Description

G Global Bit. When set, indicates that this
entry is global to all processes and/or
threads and thus disables inclusion of the
ASID in the comparison.

ASID[7:0] Address Space Identifier. Identifies which
process or thread this TLB entry is
associated with.

Table 4. Mask and Page Size Values (Continued)

Pagemask[24:13] Page Size Even/Odd Bank
Select Bit

G ASID[7:0] VPN2[31:25]  VPN2[24:13] CMASK[5:0]

612781
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Figure 7 TLB Data Array Entry Format

Page Sizes and Replacement Algorithm

To assist in controlling both the amount of mapped spa
and the replacement characteristics of various memory
regions, the 4Kc core provides two mechanisms. First, th
page size can be configured, on a per entry basis, to ma
page size of 4 Kbyte to 16 Mbyte (in multiples of 4). The
CP0PageMask register is loaded with the mapping page
size which is then entered into the TLB when a new ent
is written. Thus, operating systems can provide special
purpose maps. For example, a typical frame buffer can 
memory mapped with only one TLB entry.

The second mechanism controls the replacement algorit
when a TLB miss occurs. To select a TLB entry to be

VPN2[31:25],

VPN2[24:13]

Virtual Page Number divided by 2. This
field contains the upper bits of the virtual
page number. Because it represents a pair
of TLB pages, it is divided by 2. Bits 31:25
are always included in the TLB lookup
comparison. Bits 24:13 are included
depending on the page size.

CMASK[5:0] Compressed page mask value. This field is
a compressed version of the page mask. It
defines the page size by masking the
appropriate VPN2 bits from being involved
comparison. It is also used to determine
which address bit is used to make the even-
odd page determination.

Table 6. TLB Data Array Entry Fields

Field Name Description

PFN[31:12] Physical Frame Number. Defines the
upper bits of the physical address. For
page sizes larger than 4KB, only a subset
of these bits are actually used.

Table 5. TLB Tag Entry Fields (Continued)

Field Name Description

PFN[31:12] C[2:0] D V

11320

C[2:0] Cacheability. Contains an encoded value
of the cacheability attributes and
determines whether the page should be
placed in the cache or not. The field is
encoded as follows:

*2 and 3 are the required MIPS32
mappings for uncached and cacheable

references, other values may have
different meanings in other MIPS32

processors

D “Dirty” or write-enable bit. Indicates that
the page has been written, and/or is
writable. If this bit is set, stores to the
page are permitted. If the bit is cleared,
stores to the page cause a TLB Modified
exception.

V Valid bit. Indicates that the TLB entry,
and thus the virtual page mapping, are
valid. If this bit is set, accesses to the
page are permitted. If the bit is cleared,
accesses to the page cause a TLB Invalid
exception.

Table 6. TLB Data Array Entry Fields (Continued)

Field Name Description

CS[2:0] Coherency Attribute

000* Maps to entry 011b.

001* Maps to entry 011b.

010 Uncached

011 Cacheable, noncoherent, write through,
no write allocate

100* Maps to entry 011b.

101* Maps to entry 011.b

110* Maps to entry 011b.

111* Maps to entry 010b.
10 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.03
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written with a new mapping, the 4Kc core provides a
random replacement algorithm. However, the processor
also provides a mechanism whereby a programmable
number of mappings can be locked into the TLB via the
Wired register, thus avoiding random replacement.

Cache Controllers

The 4Kc core instruction and data cache controllers
support caches of various sizes, organizations, and set-
associativity. For example, the data cache can be 2 Kbytes
in size and 2-way set associative, while the instruction
cache can be 8 Kbytes in size and 4-way set associative.
Each cache can each be accessed in a single processor
cycle. In addition, each cache has its own 32-bit data path
and both caches can be accessed in the same pipeline clock
cycle. Refer to the “4Kc Optional Logic Blocks” section
for more information on instruction and data cache
organization.

The cache controllers also have built-in support for
replacing one way of the cache with a scratchpad RAM.
See the “4Kc Optional Logic Blocks” section for more
information on scratchpad RAMs.

Bus Interface (BIU)

The Bus Interface Unit (BIU) controls the external
interface signals. Additionally, it contains the
implementation of the 32-byte collapsing write buffer. The
purpose of this buffer is to store and combine write
transactions before issuing them at the external interface.
Since the 4Kc core caches follow a write-through cache
policy, the write buffer significantly reduces the number of
writes transactions on the external interface as well as
reducing the amount of stalling in the core due to issuance
of multiple writes in a short period of time.

The write buffer is organized as two 16-byte buffers. Each
buffer contains data from a single 16-byte aligned block of
memory. One buffer contains the data currently being
transferred on the external interface, while the other buffer
contains accumulating data from the core. Data from the
accumulation buffer is transferred to the external interface
buffer under one of the conditions:

• When a store is attempted from the core to a
different 16-byte block than is currently being
accumulated.

• SYNC Instruction

• Store to a invalid merge pattern

• Any loads or stores to uncached memory

• A load to the line being merged

Note that if the data in the external interface buffer has n
been written out to memory, the core is stalled until the
memory write completes. After completion of the memor
write, accumulated buffer data can be written to the
external interface buffer.

Merge Pattern Control

The 4Kc core implements two 16-byte collapsing write
buffers that allow byte, half-word, or word writes from the
core to be accumulated in the buffer into a 16-byte valu
before bursting the data out onto the bus in word forma
Note that writes to uncached areas are never merged.

The 4Kc core provides three options for merge pattern
control:

• No merge

• Full merge

• SysAD valid

In No Merge mode writes to a different word within the
same line are accumulated in the buffer. Writes to the sam
word cause the previous word to be driven onto the bus

In SysAD Valid mode only valid SysAD byte enable
patterns can be stored into the write buffer. When the by
enable pattern of a write to the buffer is merged with the
pattern for the previous write, the resulting pattern must b
a valid SysAD pattern in order for the merge to occur. If th
resulting pattern is not a valid SysAD pattern the previou
write is driven onto the bus before the current write is
written to the buffer. Table 7 shows the valid SysAD
patterns.

In Full Mergemode any pattern of byte enables is allowe

Table 7. Valid SysAD Byte Enable Patterns

EB_BE[3:0]

0001

0010

0100

1000

0011

1100

0111
MIPS32 4Kc™ Processor Core Datasheet, Revision 01.03 11



Power Management

l

re
e.
P
the

se

n
e

ce

it

L

L

e

is

it

of
is
4Kc Core Reset

The 4Kc core has two types of reset input signals: Reset
and ColdReset.

The ColdReset signal must be asserted on either a power-
on reset or a cold reset. In a typical application, a power-on
reset occurs when the machine is first turned on. A cold
reset (also called a hard reset) typically occurs when the
machine is already on and the system is rebooted. A cold
reset completely initializes the internal state machines of
the 4Kc core without saving any state information.The
reset and ColdReset signals work in conjunction with one
another to determine the type of reset operation.

The Reset signal is asserted for a warm reset. A warm reset
restarts the 4Kc core and preserves more of the processors
internal state than a cold reset. The Reset signal can be
asserted synchronously or asynchronously during a cold
reset, or synchronously to initiate a warm reset. The
assertion of Reset causes a soft reset exception within the
4Kc core. In debug mode, EJTAG can request that the soft
reset function be masked. It is system dependent whether
this functionality is supported. In normal mode, the soft
reset cannot be masked.

Power Management

The 4Kc core offers a number of power management
features, including low-power design, active power
management and power-down modes of operation. The
4Kc core is a static design that supports slowing or halting
the clocks, reducing system power consumption during
idle periods.

The 4Kc core provides two mechanisms for system leve
low power support:

• Register controlled power management

• Instruction controlled power management

Register Controlled Power Management

The RP bit in the CP0 Status register provides a softwa
mechanism for placing the system into a low power stat
The state of the RP bit is available externally via the SI_R
signal. The external agent then decides whether to place
device in low power mode, such as reducing the system
clock frequency.

Three additional bits, StatusEXL, StatusERL, and DebugDM
support the power management function by allowing the
user to change the power state if an exception or error
occurs while the 4Kc core is in a low power state.
Depending on what type of exception is taken, one of the
three bits will be asserted and reflected on the SI_EXL,
SI_ERL, or EJ_DebugM outputs. The external agent ca
look at these signals and determine whether to leave th
low-power state to service the exception.

These 4 power down signals are part of the system interfa
and change state as the corresponding bits in the CP0
registers are set or cleared.

• The SI_RP signal represents the state of the RP b
(27) in the CP0 Status register.

• The SI_EXL signal represents the state of the EX
bit (1) in the CP0 Status register.

• The SI_ERL signal represents the state of the ER
bit (2) in the CP0 Status register.

• The EJ_DebugM signal represents the state of th
DM bit (30) in the CP0 Debug register.

Instruction Controlled Power Management

The second mechanism for invoking power down mode
through execution of the WAIT instruction. When the
WAIT instruction is executed the internal clock is
suspended. However, the internal timer and some of the
input pins (SI_Int[5:0], SI_NMI, SI_Reset, and
SI_ColdReset) continue to run. Once the CPU is in
instruction controlled power management mode, any
interrupt, NMI, or reset condition causes the CPU to ex
this mode and resume normal operation.

The 4Kc core asserts the SI_SLEEP signal, which is part
the system interface bus, whenever the WAIT instruction
executed. The assertion of SI_SLEEP indicates that the

1110

1111

Table 8. 4Kc Reset Types

Reset ColdReset Action

0 0 Normal Operation, no reset.

1 0 Warm or Soft reset.

X 1 Cold or Hard reset.

Table 7. Valid SysAD Byte Enable Patterns

EB_BE[3:0]
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clock has stopped and that the 4Kc core is waiting for an
interrupt.

4Kc Core Optional Logic Blocks

The 4Kc core consists of the following optional logic
blocks as shown in the block diagram in Figure 1.

Instruction Cache

The instruction cache is an optional on-chip memory block
of up to 16 Kbytes. Because the instruction cache is
virtually indexed, the virtual-to-physical address
translation occurs in parallel with the cache access rather
than having to wait for the physical address translation.
The tag holds 22 bits of physical address, 4 valid bits, a
lock bit, and the fill replacement bit.

The instruction cache block also contains and manages the
instruction line fill buffer. Besides accumulating data to be
written to the cache, instruction fetches that reference data
in the line fill buffer are serviced either by a bypass of that
data, or data coming from the external interface. The
instruction cache control logic controls the bypass
function.

The 4Kc core supports instruction cache-locking. Cache
locking allows critical code or data segments to be locked
into the cache on a “per-line” basis, enabling the system
programmer to maximize the efficiency of the system
cache.

The cache locking function is always available on all
instruction cache entries. Entries can then be marked as
locked or unlocked on a per entry basis using the CACHE
instruction.

Data Cache

The data cache is an optional on-chip memory block of up
to 16 Kbytes. This virtually indexed, physically tagged
cache is protected. Because the data cache is virtually
indexed, the virtual-to-physical address translation occurs
in parallel with the cache access. The tag holds 22 bits of
physical address, 4 valid bits, a lock bit, and the fill
replacement bit.

In addition to instruction cache locking, the 4Kc core also
supports a data cache locking mechanism identical to the
instruction cache. Critical data segments to be locked into
the cache on a “per-line” basis. The locked contents can be

updated on a store hit, but cannot be selected for
replacement on a cache miss.

The cache locking function is always available on all dat
cache entries. Entries can then be marked as locked or
unlocked on a per entry basis using the CACHE
instruction.

Cache Memory Configuration

The 4Kc core incorporates on-chip instruction and data
caches that can each be accessed in a single processo
cycle. Each cache has its own 32-bit data path and can
accessed in the same pipeline clock cycle. Table 9 lists t
4Kc core instruction and data cache attributes:

Cache Protocols

The 4Kc core supports the following cache protocols:

• Uncached: Addresses in a memory area indicated
as uncached are not read from the cache. Stores
such addresses are written directly to main
memory, without changing cache contents.

• Write-through : Loads and instruction fetches first
search the cache, reading main memory only if th
desired data does not reside in the cache. On da
store operations, the cache is first searched to s
if the target address is cache resident. If it is
resident, the cache contents are updated, and m
memory is also written. If the cache lookup
misses, only main memory is written.

Table 9. 4Kc Core Instruction and Data Cache Attributes

Parameter Instruction Data

Size 0 - 16 KBytes 0 - 16 Kbytes

Organization 1 - 4 way set
associative

1 - 4 way set
associative

Line Size 16 bytes 16 bytes

Read Unit 32-bits 32-bits

Write Policy na write-through
without write-

allocate

Miss restart after
transfer of

miss word miss word

Cache Locking per line  per line
MIPS32 4Kc™ Processor Core Datasheet, Revision 01.03 13
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ScratchPad RAM

The 4Kc core also supports replacing up to one way of each
cache with a scratchpad RAM. The scratchpad RAM is
user-defined and can consist of a variety of devices. The
main requirement is that it must be accessible with timing
similar to a regular cache RAM. This means that an index
will be driven one cycle, a tag will be driven the following
clock, and the scratchpad must return a hit signal and the
data in the second clock. The scratchpad can thus easily
contain a large RAM/ROM or memory mapped registers.

The core’s interface to a scratchpad RAM is slightly
different than to a regular cache RAM. Additional index
bits allow access to a larger array, 1MB of scratchpad RAM
vs. 4KB for a cache way. These bits come from the virtual
address so on a 4Kc core care must be taken to avoid virtual
aliasing.The core does not automatically refill the
scratchpad way and will not select it for replacement on
cache misses. Additionally, stores that hit in the scratchpad
will not generate write-thrus to main memory.

EJTAG Debug Support

The 4Kc core provides for an optional Enhanced JTAG
(EJTAG) interface for use in the software debug of
application and kernel code. In addition to standard user
mode and kernel modes of operation, the 4Kc core
provides a Debug mode which is entered after a debug
exception (derived from a hardware breakpoint, single-step
exception, etc) is taken and continues until a debug
exception return (DERET) instruction is executed. During
this time the processor executes the debug exception
handler routine.

Refer to the Pin Descriptions section for a list of signals
EJTAG interface signals.

The EJTAG interface operates through the Test Access Port
(TAP), a serial communication used for transferring test
data in and out of the 4Kc core. In addition to the standard
JTAG instructions, special instructions defined in the
EJTAG specification define what registers are selected and
how they are used.

Debug Registers

Three debug registers (DEBUG, DEPC, and DESAVE)
have been added to the MIPS Coprocessor 0 (CP0) register
set. The DEBUG register shows the cause of the debug
exception and is used for the setting up of single step
operations. The DEPC or Debug Exception Program
Counter register holds the address on which the debug

exception was taken. This is used to resume program
execution after the debug operation finishes. Finally, the
DESAVE or Debug Exception Save register enables the
saving of general purpose registers used during execut
of the debug exception handler.

To exit debug mode, a Debug Exception Return (DERET
instruction is executed. When this instruction is execute
the system exits debug mode, allowing normal execution
application and system code to resume.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints
defined in the EJTAG specification. These stop the norm
operation of the CPU and force the system into debug
mode. There are two types of simple hardware breakpoin
implemented in the 4Kc core: Instruction breakpoints an
Data breakpoints.

The 4Kc core can be configured with the following
breakpoint options:

• No data or instruction breakpoints

• Two instruction and one data breakpoint

• Four instruction and two data breakpoints

Instruction breaks occur on instruction fetch operations
and the break is set on virtual address on the bus betw
the CPU and the instruction cache. Instruction breaks c
also be made on the ASID value used by the MMU. Finall
a mask can be applied to the virtual address to set
breakpoints on a range of instructions.

Data breakpoints occur on load/store transactions.
Breakpoints are set on virtual address and ASID values
similar to the Instruction breakpoint. Data breakpoints ca
be set on a load, a store or both. Data breakpoints can a
be set based on the value of the load/store operation.
Finally, masks can be applied to both the virtual addres
and the load/store value.

4Kc Core Instructions

The 4Kc core instruction set complies with the MIPS32
instruction set architecture. Table 10 provides a summa
of instructions implemented by the 4Kc core.
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Table  10. 4Kc Core Instruction Set

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

BEQ Branch On Equal if Rs == Rt

 PC += (int)offset

BEQL Branch On Equal Likely if Rs == Rt

  PC += (int)offset

else

  Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]

  PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And
Link

GPR[31] = PC + 8

if !Rs[31]

  PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And
Link Likely

GPR[31] = PC + 8

if !Rs[31]

  PC += (int)offset

else

  Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero
Likely

if !Rs[31]

  PC += (int)offset

else

  Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0

  PC += (int)offset

BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0

  PC += (int)offset

else

  Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0

  PC += (int)offset
MIPS32 4Kc™ Processor Core Datasheet, Revision 01.03 15
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BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0

  PC += (int)offset

else

  Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]

  PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8

if Rs[31]

  PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8

if Rs[31]

  PC += (int)offset

else

  Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]

  PC += (int)offset

else

  Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt

  PC += (int)offset

BNEL Branch on Not Equal Likely if Rs != Rt

  PC += (int)offset

else

  Ignore Next Instruction

BREAK Breakpoint Break Exception

CACHE Cache Operation SeeSoftware Users Manual

COP0 Coprocessor 0 Operation SeeSoftware Users Manual

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

DERET Return from Debug Exception PC = DEPC

Exit Debug Mode

DIV Divide LO = (int)Rs / (int)Rt

HI = (int)Rs % (int)Rt

DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt

HI = (uns)Rs % (uns)Rt

Table  10. 4Kc Core Instruction Set (Continued)

Instruction Description Function
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ERET Return from Exception if SR[2]

  PC = ErrorEPC

else

  PC = EPC

  SR[1] = 0

SR[2] = 0

LL = 0

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8

PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8

PC = Rs

JR Jump Register PC = Rs

LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

LL Load Linked Word Rt = Mem[Rs+offset]

LL = 1

LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWL Load Word Left SeeSoftware Users Manual

LWR Load Word Right SeeSoftware Users Manual

MADD Multiply-Add HI | LO += (int)Rs * (int)Rt

MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, n, sel] = Rt

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVN Move Conditional on Not Zero if Rt≠ 0 then

   Rd= Rs

MOVZ Move Conditional on Zero if Rt = 0 then

   Rd = Rs

MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt

MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt

Table  10. 4Kc Core Instruction Set (Continued)

Instruction Description Function
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MTC0 Move To Coprocessor 0 CPR[0, n, SEL] = Rt

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write HI | LO =Unpredictable

Rd = ((int)Rs * (int)Rt)31..0

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Load Specified Line into Cache

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word if LL = 1

   mem[Rs+offset] = Rt

Rt = LL

SDBBP Software Debug Break Point Trap to SW Debug Handler

SH Store Half (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if (int)Rs < (int)Rt

  Rd = 1

else

  Rd = 0

SLTI Set on Less Than Immediate if (int)Rs < (int)Immed

  Rt = 1

else

  Rt = 0

SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed

  Rt = 1

else

  Rt = 0

SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed

  Rd = 1

else

  Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

Table  10. 4Kc Core Instruction Set (Continued)

Instruction Description Function
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SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation NOP

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[Rs+offset] = Rt

SWL Store Word Left SeeSoftware Users Manual

SWR Store Word Right SeeSoftware Users Manual

SYNC Synchronize SeeSoftware Users Manual

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt

  TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed

  TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt

  TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed

  TrapException

TGEIU Trap if Greater Than or Equal Immediate
Unsigned

if (uns)Rs >= (uns)Immed

  TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt

  TrapException

TLBWI Write Indexed TLB Entry See Software Users Manual

TLBWR Write Random TLB Entry See Software Users Manual

TLBP Probe TLB for Matching Entry See Software Users Manual

TLBR Read Index for TLB Entry See Software Users Manual

TLT Trap if Less Than if (int)Rs < (int)Rt

  TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed

  TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed

  TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt

  TrapException

Table  10. 4Kc Core Instruction Set (Continued)

Instruction Description Function
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4Kc Core Signal Descriptions

This chapter describes the signal interface of the 4Kc
microprocessor core. The pin direction key for the signal
descriptions is shown in Table 11 below.

The 4Kc core signals are listed in Table 12 below. Note that
the signals are grouped by logical function, not by expected
physical location. All signals, with the exception of

EJ_TRST_N are active high signals. EJ_DINT and
SI_NMI go through edge-detection logic so that only on
exception is taken each time they are asserted.

TNE Trap if Not Equal if Rs != Rt

  TrapException

TNEI Trap if Not Equal Immediate if Rs != (int)Immed

  TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

Table  10. 4Kc Core Instruction Set (Continued)

Instruction Description Function

Table  11. 4Kc Core Signal Direction Key

Signal Direction Key

Dir Description

I Input to the4Kc Core sampled on the rising edge of the appropriate CLK signal.

O Output of the4Kc Core, unless otherwise noted, driven at the rising edge of the appropriate
CLK signal.

A Asynchronous inputs that are synchronized by the core

S Static Input to the4Kc Core. These signals are normally tied to either power or ground and
should not change state while SI_ColdReset is deasserted.

Table  12. 4Kc Signal Descriptions

Signal Name Type Description

System Interface

Clock Signals:

SI_ClkIn I Clock input. All inputs and outputs, except a few of the EJTAG signals, are
sampled and/or asserted relative to the rising edge of this signal.

SI_ClkOut O Reference clock for the External Bus Interface. This clock signal is intended
to provide a reference for de-skewing any clock insertion delay created by the
internal clock buffering in the core.

Reset Signals:.

SI_ColdReset A Hard/Cold reset signal. Causes a Reset Exception in the core.
20 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.03



4Kc Core Signal Descriptions
SI_NMI A Non-maskable Interrupt. An edge detect is used on this signal. When this
signal is sampled asserted (high) one clock after being sampled deasserted, an
NMI is posted to the core.

SI_Reset A Soft/Warm reset signal. Causes a SoftReset Exception in the core.

Power management signals

SI_ERL O This signal represents the state of the ERL bit (2) in the CP0 Status register and
indicates the error level. The core asserts SI_ERL whenever a Reset, Soft
Reset, or NMI exception is taken.

SI_EXL O This signal represents the state of the EXL bit (1) in the CP0 Status register
and indicates the exception level. The core asserts SI_EXL whenever any
exception other than a Reset, Soft Reset, NMI, or Debug exception is taken.

SI_RP O This signal represents the state of the RP bit (27) in the CP0 Status register.
Software can write this bit to indicate that the device can enter a reduced power
mode.

SI_SLEEP O This signal is asserted by the core whenever the WAIT instruction is executed.
The assertion is this signal indicates that the clock has stopped and that the
core is waiting for an interrupt.

Interrupt Signals:

SI_Int[5:0] A Active high Interrupt pins. These signals are driven by external logic and when
asserted indicate the corresponding interrupt exception to the core. These
signals go through synchronization logic and can be asserted asynchronously
to SI_ClkIn

SI_TimerInt O This signal is asserted whenever the Count and Compare registers match and
is deasserted when the Compare register is written. In order to have timer
interrupts, this signal needs to be brought back into the 4K core on one of the
six SI_Int interrupt pins. Traditionally, this has been accomplished via muxing
SI_TimerInt with SI_Int[5]. Exposing SI_TimerInt as an output allows more
flexibility for the system designer. Timer interrupts can be muxed or ORed into
one of the interrupts, as desired in a particular system. In a complex system, it
could even be fed into a priority encoder to allow SI_Int[5:0] to map up to 63
interrupt sources.

Configuration Inputs:

SI_Endian S Indicates the base endianness of the core.

Table  12. 4Kc Signal Descriptions

Signal Name Type Description

EB_Endian Base Endian Mode

0 Little Endian

1 Big Endian
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SI_MergeMode[1:0] S The state of these signals determines the merge mode for the 16-byte
collapsing write buffer.

External Bus Interface

EB_ARdy I Indicates whether the target is ready for a new address. The core will not
complete the address phase of a new bus transaction until the clock cycle after
EB_ARdy is sampled asserted.

EB_AValid O When asserted, indicates that the values on the address bus and access types
lines are valid, signifying the beginning of a new bus transaction. EB_AValid
must always be valid.

EB_Instr O When asserted, indicates that the transaction is an instruction fetch versus a
data reference. EB_Instr is only valid when EB_AValid is asserted.

EB_Write O When asserted, indicates that the current transaction is a write. This signal is
only valid when EB_AValid is asserted.

EB_Burst O When asserted, indicates that the current transaction is part of a cache fill or a
write burst. Note that there is redundant information contained in EB_Burst,
EB_BFirst, EB_BLast, and EB_BLen. This is done to simplify the system
design - the information can be used in whatever form is easiest.

EB_BFirst O When asserted, indicates beginning of burst. EB_BFirst is always valid.

EB_BLast O When asserted, indicates end of burst. EB_BLast is always valid.

EB_BLen<1:0> O Indicates length of the burst. This signal is only valid when EB_AValid is
asserted.

EB_SBlock SI When sampled asserted sub block ordering is used. When sampled deasserted
sequential addressing is used.

Table  12. 4Kc Signal Descriptions

Signal Name Type Description

Encoding Merge Mode

00 No Merge

01 SysAD Valid

10 Full Merge

11 Reserved

EB_BLength<1:0> Burst Length

0 reserved

1 4

2 reserved

3 reserved
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EB_BE<3:0> O Indicates which bytes of the EB_RData or EB_WData buses are involved in
the current transaction. If an EB_BE signal is asserted, the associated byte is
being read or written. EB_BE lines are only valid while EB_AValid is
asserted.

EB_A<35:2> O Address lines for external bus. Only valid when EB_AValid is asserted.
EB_A[35:32] are tied to 0 in this core.

EB_WData<31:0> O Output data for writes

EB_RData<31:0> I Input Data for reads

EB_RdVal I Indicates that the target is driving read data on EB_RData lines. EB_RdVal
must always be valid. EB_RdVal may never be sampled asserted until the ris-
ing edge after the corresponding EB_ARdy was sampled asserted.

EB_WDRdy I Indicates that the target of a write is ready. The EB_WData lines can change
in the next clock cycle. EB_WDRdy will not be sampled until the rising edge
where the corresponding EB_ARdy is sampled asserted.

EB_RBErr I Bus error indicator for read transactions. EB_RBErr is sampled on every ris-
ing clock edge until an active sampling of EB_RdVal. EB_RBErr sampled
with asserted EB_RdVal indicates a bus error during read. EB_RBErr must be
deasserted in idle phases.

EB_WBErr I Bus error indicator for write transactions. EB_WBErr is sampled at the rising
clock edge following an active sample of EB_WDRdy. EB_WBErr must be
deasserted in idle phases.

EB_EWBE I Indicates that any external write buffers are empty. The external write buffers
must deassert EB_EWBE in the cycle after the corresponding EB_WDRdy is
asserted and keep EB_EWBE deasserted until the external write buffers are
empty.

EB_WWBE O When asserted, indicates that the core is waiting for external write buffers to
empty.

EJTAG Interface

TAP interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core
does not implement the TAP controller.

EJ_TRST_N I Active low Test Reset Input (TRST*) for the EJTAG TAP. At power-up the
assertion of EJ_TRST_N causes the TAP controller to be reset.

EJ_TCK I Test Clock Input (TCK) for the EJTAG TAP.

EJ_TMS I Test Mode Select Input (TMS) for the EJTAG TAP.

EJ_TDI I Test Data Input (TDI) for the EJTAG TAP.

EJ_TDO O Test Data Output (TDO) for the EJTAG TAP.

Table  12. 4Kc Signal Descriptions

Signal Name Type Description

EB_BE
Signal

Read Data Bits
Sampled

Write Data Bits
Driven Valid

EB_BE<0> EB_RData<7:0> EB_WData<7:0>

EB_BE<1> EB_RData<15:8> EB_WData<15:8>

EB_BE<2> EB_RData<23:16> EB_WData<23:16>

EB_BE<3> EB_RData<31:24> EB_WData<31:24>
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d

EJ_TDOzstate O Drive indication for the output of TDO for the EJTAG TAP at chip level:
1: The TDO output at chip level must be in Z-state
0: The TDO output at chip level must be driven to the value of EJ_TDO.

IEEE Standard 1149.1-1990 defines TDO as a tri-stated signal. To avoid hav-
ing a tri-state core output, the 4K core outputs this signal to drive an external
tri-state buffer.

Debug Interrupt:

EJ_DINTsup S Value of DINTsup for the Implementation register. A 1 on this signal indi-
cates that the EJTAG probe can use DINT signal to interrupt the processor.

EJ_DINT I Debug exception request when this signal is asserted in a CPU clock period
after being deasserted in the previous CPU clock period. The request is
cleared when debug mode is entered. Requests when in debug mode are
ignored.

Debug Mode Indication

EJ_DebugM O Asserted when the core is in DebugMode. This can be used to bring the core
out of a low power mode In systems with multiple processor cores, this signal
can be used to synchronize the cores when debugging.

Device ID bits: These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller
is not implemented, these inputs are not connected. These inputs are always available for soft core customers. On har
cores, the core “hardener” may set these inputs to their own values

EJ_ManufID[10:0] S Value of the ManufID[10:0] field in the Device ID register. As per IEEE
1149.1-1990 section 11.2,the manufacturer identity code shall be a com-
pressed form of JEDEC standard manufacturer’s identification code in the
JEDEC Publications106, which can be found at: http://www.jedec.org/

ManufID[6:0] bits are derived from the last byte of the JEDEC code by dis-
carding the parity bit. ManufID[10:7] bits provide a binary count of the num-
ber of bytes in the JEDEC code that contain the continuation character
(0x7F). Where the number of continuations characters exceeds 15, these 4
bits contain the modulo-16 count of the number of continuation characters.

EJ_PartNumber[15:0] S Value of the PartNumber[15:0] field in the Device ID register.

EJ_Version[3:0] S Value of the Version[3:0] field in the Device ID register.

System Implementation Dependent Outputs: These signals come from EJTAG control registers. They have no effect
on the core, but can be used to give EJTAG debugging software additional control over the system.

EJ_SRstE O Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft
resets. If this signal is deasserted, none, some, or all soft reset sources are
masked.

EJ_PerRst O Peripheral Reset. EJTAG can assert this signal to request the reset of some or
all of the peripheral devices in the system.

EJ_PrRst O Processor Reset. EJTAG can assert this signal to request that the core be reset.
This can be fed into the SI_Reset signal

Performance Monitoring Interface: These signals can be used to implement performance counters which can be
used to monitor HW/SW performance

PM_DCacheHit O This signal is asserted whenever there is a data cache hit.

PM_DCacheMiss O This signal is asserted whenever there is a data cache miss.

PM_DTLBHit O This signal is asserted whenever there is a hit in the data TLB.

PM_DTLBMiss O This signal is asserted whenever there is a miss in the data TLB.

Table  12. 4Kc Signal Descriptions

Signal Name Type Description
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4Kc Core Bus Transactions

The 4Kc core implements the EC™ interface for its bus
transactions. This interface uses a pipelined, in-order
protocol with independent address, read data, and write
data buses. The following sections describe the four basic
bus transactions: single read, single write, burst read, and
burst write.

Single Read

Figure 8 shows the basic timing relationships of signals
during a simple read transaction. During a single read
cycle, the 4Kc core drives address onto EB_A[35:2] and
byte enable information onto EB_BE[3:0]. To maximize
performance, the EC interface does not define a maximum
number of outstanding bus cycles. Instead it provides the

EB_ARdy input signal. This signal is driven by external
logic and controls the generation of addresses on the b

In the 4Kc core address is driven whenever it becomes
available, regardless of the state of EB_ARdy. However
the 4Kc core always continues to drive address until the
clock after EB_ARdy is sampled asserted. For example,
the rising edge of the clock 2 in Figure 8 the EB_ARdy
signal is sampled low, indicating that external logic is no
ready to accept the new address. However, the 4Kc cor
still drives EB_A[35:2] in this clock as shown. At the rising
edge of the clock 3 the 4Kc core samples EB_ARdy
asserted and continues to drive address until the rising ed
of clock 4.

The EB_Instr signal is only asserted during a singled rea
cycle if there is an instruction fetch from non-cacheable
memory space. The EB_AValid signal is driven in each

PM_ICacheHit O This signal is asserted whenever there is an instruction cache hit.

PM_ICacheMiss O This signal is asserted whenever there is an instruction cache miss.

PM_InstComplete O This signal is asserted each time an instruction completes in the pipeline.

PM_ITLBHit O This signal is asserted whenever there is an instruction TLB hit.

PM_ITLBMiss O This signal is asserted whenever there is an instruction TLB miss.

PM_JTLBHit O This signal is asserted whenever there is a joint TLB hit.

PM_JTLBMiss O This signal is asserted whenever there is a joint TLB miss.

PM_WTBMerge O This signal is asserted whenever there is a successful merge in the write
through buffer.

PM_WTBNoMerge O This signal is asserted whenever a non-merging store is written to the write
through buffer.

Scan Test Interface:These signals provide the interface for testing the core. The use and configuration of these pins
are implementation dependent.

ScanEnable I This signal should be asserted while scanning vectors into or out of the core.
The ScanEnable signal must be deasserted during normal operation and during
capture clocks in test mode.

ScanMode I This signal should be asserted during all scan testing both while scanning and
during capture clocks. The ScanMode signal must be deasserted during normal
operation.

ScanIn<n:0> I This signal is Input to scan chain.

ScanOut<n:0> O This signal is Output from scan chain.

BistIn<n:0> I Input to the BIST controller

BistOut<n:0> O Output from the BIST controller

Table  12. 4Kc Signal Descriptions

Signal Name Type Description
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clock that EB_A[35:2] is valid on the bus. The 4Kc core
drives the EB_Write signal low to indicate a read
transaction.

The EB_RData[31:0] and EB_RdVal signals are first
sampled at the rising edge of clock 4, one clock after
EB_ARdy is sampled asserted. Data is sampled on every
clock thereafter until EB_RdVal is sampled asserted.

If a bus error occurs during the data transaction, external
logic asserts the EB_RBErr signal in the same clock as
EB_RdVal.

Figure 8 Single Read Transaction Timing Diagram

Single Write

Figure 9 shows a typical write transaction. The 4Kc core
drives address and control information onto the
EB_A[35:2] and EB_BE[3:0] signals at the rising edge of
clock 2. As in the single read cycle, these signals remain
active until the clock edge after the EB_ARdy signal is
sampled asserted. The 4Kc core asserts the EB_Write
signal to indicate that a valid write cycle is on the bus, and
EB_AValid to indicate that valid address is on the bus.

The 4Kc core drives write data onto EB_WData[31:0] in
the same clock as address and continues to drive data until
the clock edge after the EB_WDRdy signal is sampled
asserted. If a bus error occurs during a write operation,
external logic asserts the EB_WBErr signal one clock after
asserting EB_WDRdy.

Figure 9 Single Write Transaction Timing Diagram

Burst Read

The 4Kc core is capable of generating burst transactions
the bus. A burst transaction is used to transfer multiple da
items in one transaction.

Figure 10 shows an example of a burst read transaction
Burst read transactions initiated by the 4Kc core always
contain four data transfers in a sequence determined by
critical word (the address that caused the miss) and the
EB_SBlock input. In addition, the data requested is alway
a 16-byte aligned block.

The order of words within this 16 byte block varies
depending on which of the words in the block is being
requested by the execution unit and the ordering protoc
selected. The burst always starts with the word request
by the execution unit and proceeds in either an ascend
or descending address order, wrapping when the block
boundary is reached.Table 13 and Table 14 show the
sequence of address bits 2 and 3.

EB_Clk

EB_A[35:2]

EB_Instr,

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_ARdy
Addr
Wait

Address and Control held until clock after EB_ARdy sampled asserted

Valid

Valid

Valid

EB_BE[3:0],

Driven by system logic

Clock # 1 2 3 4 5 6 7 8

EB_Write

Table 13. Sequential Ordering Protocols

Starting Address
EB_A[3:2]

Address Progression
of EB_A[3:2]

00 00, 01, 10, 11

01 01, 10, 11, 00

10 10, 11, 00, 01

11 11, 00, 01, 10

EB_Clk

EB_A[35:2]

EB_BE[3:0]

EB_AValid

EB_WData[31:0]

EB_WDRdy

EB_WBErr

EB_Write

EB_ARdy

Address and Control held until clock after EB_ARdy sampled asserted

Valid

Valid

Valid

Driven by system logic

Data is Driven until clock after EB_WDRdy

Addr
Wait

Clock # 1 2 3 4 5 6 7 8
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The 4Kc core drives address and control information onto
the EB_A[35:2] and EB_BE[3:0] signals at the rising edge
of clock 2. As in the single read cycle, these signals remain
active until the clock edge after the EB_ARdy signal is
sampled asserted. The 4Kc core continues to drive
EB_AValid as long as a valid address is on the bus.

The EB_Instr signal is asserted if the burst read is for an
instruction fetch. The EB_Burst signal is asserted while the
address is on the bus to indicate that the current address is
part of a burst transaction. The 4Kc core asserts the
EB_BFirst signal in the same clock as the first address is
driven and the EB_BLast signal in the same clock as the
last address to indicate the start and end of a burst cycle.

The 4Kc core first samples the EB_RData[31:0] signals
two clocks after EB_ARDy is sampled asserted. External
logic asserts EB_RdVal to indicate that valid data is on the
bus. The 4Kc core latches data internally whenever
EB_RVal is sampled asserted.

Note that at the rising edge of clocks 3 and 6 in Figure 10
the EB_RdVal signal is sampled deasserted, causing wait
states in the data return. There is also an address wait state
caused by EB_ARdy being sampled deasserted at the
rising edge of clock 4. Note that the core holds address 3
on the EB_A bus for an extra clock because of this wait
state. External logic asserts the EB_RBErr signal in the
same clock as data if a bus error occurs during that data
transfer.

Figure 10 Burst Read Transaction Timing Diagram

Burst Write

Burst write transactions are used to empty one of the wri
buffers. A burst transaction is only performed if the write
buffer contains 16 bytes of data associated with the sam
aligned memory block, otherwise individual write
transactions are performed. Figure 11 shows a timing
diagram of a burst write transaction. Unlike the read burs
a write burst always begins with EB_A[3:2] equal to 00b

The 4Kc core drives address and control information on
the EB_A[35:2] and EB_BE[3:0] signals at the rising edg
of clock 2. As in the single read cycle, these signals rema
active until the clock edge after the EB_ARdy signal is
sampled asserted. The 4Kc core continues to drive
EB_AValid as long as a valid address is on the bus.

The 4Kc core asserts the EB_Write, EB_Burst, and
EB_AValid signals during the time the address is driven
EB_Write indicates that a write operation is in progress
The assertion of EB_Burst indicates that the current
operation is a burst. EB_AValid indicates that valid addres
is on the bus.

The 4Kc core asserts the EB_BFirst signal in the same
clock as address 1 is driven to indicate the start of a bu

Table 14. SubBlock Ordering Protocols

Starting Address
EB_A[3:2]

Address Progression
of EB_A[3:2]

00 00, 01, 10, 11

01 01, 00, 11, 10

10 10, 11, 00, 01

11 11, 10, 01, 00

Addr
Wait

EB_Clk

EB_A[35:2]

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_BFirst

EB_ARdy

EB_Instr

Adr1 Adr2

Valid

EB_Burst

Adr3 Adr4

EB_BE[3:0]

Data1 Data2 Data3 Data4

EB_BLast

Driven by system logic

Clock # 1 2 3 4 5 6 7 8

EB_Write

Read
Wait

Read
Wait
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cycle. In the clock that the last address is driven, the 4Kc
core asserts EB_BLast to indicate the end of the burst
transaction.

In Figure 11 the first data word (Data1) is driven in clocks
2 and 3 due to the EB_WDRdy signal being sampled
deasserted at the rising edge of clock 3, causing a wait
state. When EB_WDRdy is sampled asserted at the rising
edge of clock 4, the 4Kc core responds by driving the
second word (Data2).

External logic drives the EB_WBErr signal one clock after
the corresponding assertion of EB_WDRdy if a bus error
has occurred as shown by the arrows in Figure 11.

Figure 11 Burst Write Transaction Timing Diagram

EB_Clk

EB_A[35:2]

EB_AValid

EB_WData[31:0]

EB_WDRdy

EB_WBErr

EB_BFirst

EB_ARdy

Adr1 Adr2 Adr3 Adr4

EB_BE[3:0]

Write
Wait

Data1 Data2 Data3 Data4

EB_BLast

EB_Burst

Write
Wait

Clock # 1 2 3 4 5 6 7 8

EB_Write

Driven by
system logic
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