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CT C does not lend itself well to data abstraction or 
object-oriented programming. 
C trusts the programmer, and does not prevent 
the programmer from accessing any data 
locations. 

The process of developing software varies 
from company to company, and often project to 
project. Often lost in the argument of which 
process to use is coding for optimization of 
throughput and resources. 

This paper will explore different ways of 
optimizing C source code. Topics presented 
include, but are not limited to, the importance of 
selecting a compiler and understanding its 
options at the beginning of a project, analysis of 
fixed-point versus floating point operations, and 
ways to conserve stack and memory resources. 
Comparisons between compilers and processors 
will not be addressed, but data and examples will 
be given to show improvements on multiple 
platforms. 

PROGRAMMING IN C 

At the start of a project, it is important to 
evaluate which programming language to use. 
Below are a few fundamental ideas about using 
the C programming language: 

C is  a general-purpose programming 
language. 

C is a relatively “low-level” language; 
programmers deal with addresses, storage 
sizes, and logical operators much in the same 
way as real computers do. 

C provides fundamental control-flow constructs 
such as if-else, switch, for, and do-while, 
allowing well-structured programs. 

0 C code can be developed to run very fast, even 
though in doing so it may not be very portable 
across different platforms and processors. 

SELECTING A COMPILEWOPTIONS 

At the beginning of a project, the platform is 
normally selected based on current and 
anticipated processing needs. In the course of a 
project, the processing time and throughput may 
creep upward, eventually causing problems to 
occur. It then becomes vital to optimize the 
system for fast execution. Similarly, when RAM or 
other memory begins to increase above 
forecasted use, it becomes necessary to optimize 
for code size and memory use. 

Early C compilers were not very good at 
looking for improvements which often caused the 
generated machine code to be far from optimum. 
Today, high-quality compilers normally include an 
optimizer which examines the generated 
assembly code and looks for ways to improve it. 
The compilers will generate machine instructions 
based on the C code written, and then make 
multiple passes through the code to look for 
improvements. The compiler will update the 
machine code with improvements and continue to 
analyze the code until no further enhancements 
can be made. Ideally, these compilers will 
generate the same assembly code independent 
of coding style used within the source code. This 
allows programmers to code with clarity and 
readability in mind. 
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One compiler option is eliminating redundant 
code. This involves looking for operations that 
produce no useful result when performed. When 
the compiler finds these statements while 
optimizing, it will remove them from the compiled 
machine code. 

a = a + 0; 
b + c; 
d &= d; 

<-- no code generated 
<-- no code generated 
<-- no code generated 

Another compiler option is replacing operations 
with equivalent but faster operations that do not 
effect the final result. Costly multiply and divide 
operators are replaced with left and right shift 
operators wherever possible. The modulus (Yo) 
operator is replaced with the bit-and operator 
wherever possible. If your compiler does not 
make these optimizations for you, then it may 
become necessary to put the equivalent 
operations directly in the source code. 

x = y * 16 -- replaced with --> x = y << 4 
(unsigned)y / 64 -- replaced with --> y >> 6 
(unsigned)z Yo 8 -- replaced with --7 z & 7 

Many of the newer C compilers are also very 
good at making effective use of the processor’s 
registers that are available. Even on small 8-bit 
processors, arguments that are supposed to be 
passed to and from functions are placed in fast 
registers instead. On larger 32- and 64-bit 
platforms, more registers are available to take 
advantage of this optimization. This helps to keep 
pushing and pulling of data off the stack to a 
minimum, again helping to increase speed. The 
example below shows a C segment compiled on 
a 32-bit platform. Notice that the function 
assembler output below places the result in 
register dO as opposed to pushing the result onto 
the stack. 

Code: Assembler Output : 

static char j, k; m0ve.b J, dO 
char Example( void ) add.b -k, dO 
{ rtS 

1 
return ( j + k ); 

Compiler optimizations can also remove code 
segments that it knows cannot be executed 
based on the code conditions. This unreachable 
code occurs through preprocessor conditional 
compiles or other olptimizations that the compiler 
has made. The corripiler will normally generate a 
warning message if the unreachable code is a 
result of preprocessor conditional compiles or 
programmer’s error. Two examples of 
unreachable code are shown below. 

got0 L1: 
j = 20; --> no code generated 
k = 40; --> no code generated 

L1: 
f = 30; 

if ( a != a ) b = 10; --> no code generated 

When optimizinlg for speed, the compiler can 
also “unroll” loops. lh is  normally involves looking 
for less than a fixed number of iterations of a loop. 
If a small number is found, instead of having a 
compare and a conditional branch being 
performed, it places the particular operations 
repetitively. This helps a developer write well- 
written code without worrying about manually 
unrolling the smaller loops in the code. For a 
small number of iterations, it may also save on the 
code size. 

There are some things to look out for when 
having the compiler (do optimizations for you. The 
code executed on the processor will change when 
the compiler optirriizer options change. This 
makes it important to have all the programmers 
on a project use the same set of options. Perform 
unit and systems tests using options intended for 
the final product. Comparing the source code and 
generated assembly output can reveal errors in 
the code or errors when the compiler made 
improvements. Looking at the assembly output 
can also help you to become a better programmer 
in general. 
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AND FLOATING POINT OP 

Most microprocessors and microcontrollers 
used for embedded or small systems today do not 
have hardware-assisted floating-point math 
support. Having a math coprocessor is an added 
expense that some platforms do not need. The C 
compilers of today implement floating-point used 
in C source code with floating-point emulation 
libraries. These libraries are written by the 
compiler companies to perform fixed-point 
conversions and operations to handle floating- 
point math. 

A common way to execute code faster when 
hardware-assisted floating-point support is not 
available is to use fixed-point math instead of 
floating-point emulation math. This allows the 
compiler to use machine instructions for the math 
operations as opposed to the floating-point emu- 
lation libraries. This will cut down the amount of 
processing time needed to do mathematical 
operations. An even better alternative is to use 
fixed-point representation of base two numbers 
so the optimizer on the compiler can determine 
that multiplying by eight is the same as left bit 
shifting by three. Floating-point emulation librar- 
ies also take up additional RAM and fixed mem- 
ory, so using fixed-point will also decrease code 
size. 

To determine the differences between fixed- 
point and floating-point emulation multiplies, an 
emulator with time measurement capability was 
used. On an 8-bit platform, an 8-bit fixed multiply 
took 12 microseconds. On the same 8-bit 
platform, a floating-point multiply took 250 
microseconds. On a 32-bit platform, a 32-bit fixed 
multiply took 3 microseconds. On the same 32-bit 
platform, a floating-point multiply took 40 
microseconds. This shows there are definite 
advantages in avoiding floating-point emulation in 
time-critical applications. 

As mentioned in the previous section on 
compiler optimizations, wherever base-2 fixed- 
point constants are used, teft and right bit shift 
operations can be implemented. This is one of the 
added benefits of using fixed-point math. Below is 
an example where bit shifting is used in place of a 
machine multiply. 

~ 
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Code: 
static unsigned int i, j, k; 

static void example( void ) 
{ 

I 
i = j * k l32 ;  

Assembler Output: 
move.1 -.S13j, dO ; places j in register 
mulu.1 -.sl4-k, dO ; machine multiply 
1sr.l #5, dO ; performs right shift 
move.1 do, 3 1 2 - i  
rtS 

Floating-point emulation causes the 
generated code to make a function call to the 
floating-point libraries. Many operations are 
performed to set up the registers before the 
floating-point library function is called. The setting 
up of these registers is compiler specific. Shown 
below is an example of floating-point multiply 
being performed and the assembly code it 
generates. 

Code: 
static float f, g, h; 

void Example( void ) 
{ 

1 
f = g * h ;  

Assembler Output (30 clk + fmul$ call -450 clk): 
Idy h ; compiler-specific loading registers 
Idd h+2 
Idx #g 
jsr fmul$ ; floating-point library call 
sty f ; compiler-specific saving result 
std f+2 
rtS 

Using fixed-point operations causes the 
compiler to execute the built-in machine 
instructions instead of making special library 
calls. The number of clock cycles necessary to 
perform the multiply is much less than the 
floating-point example above. Shown below is an 
example of the same multiply code as above 
except the operation is performed using non 
floating-point numbers. Notice the time difference 



in clock cycles compared to the previous floating- 
point example. 

Code: 
static unsigned int j, k, n; 

void Example( void ) 
{ 

I 
j = k * n ;  

Assembler Output (27 clk): 
ldab n 
ldaa k 
mu1 
stab j 
rtS 

Fixed-point math involves representing 
floating-point numbers with integers. For 
instance, if a 16-bit integer is used to represent 
engine speed, and scaling for engine speed was 
1/4 RPM, a number of 22 in the integer engine 
speed would represent 5.5 RPM. Wherever 
engine speed is used in the code, its scaling of 1/ 
4 would have to be considered in calculations and 
comparisons. If you were to compare it to an 
engine speed limit that had a scaling of 1/8 RPM, 
then you would have to adjust the scaling of the 
engine speed to 1/8 by multiplying the engine 
speed integer by 2. The example below shows a 
simple speed multiplied by time operation. The 
calculation becomes complex because of the 
scaling conversion to put the distance in the 
proper scaling of 1/128 miles. Even though the 
calculation appears to be very complex, the 
compiler optimizer evaluates the constant 
expression and converts it to a single number. 

Code: 
#define SPD-SCALE 4.0 P Speed 1/4 MPH */ 
#define TIME-SCALE 2.0 /* Time 1/2 second */ 
#define DIST-SCALE 128.0 P Dist 1/128 mile */ 
#define SEC-IN-HR 3600.0 P 3600 seclhour */ 

extern unsigned int dist, spd, time; 
void Example( void ) 
{ 

dist = spd * time / 
(unsigned int)(SPD-SCALE * TIME-SCALE * 

SEC-IN-HR / DIST-SCALE); 
1 

Assembler Output: 

m0ve.w -spd, dO 
mu1u.w -time, dO 
divul.1 #225, dO 
m0ve.w do, dist 
rtS 

; preprocessor evaluates 

There are some things to watch out for if you 
decide to use fixed-point instead of floating-point. 
The equations and code doing comparisons 
between unlike scaled numbers will become 
complicated. The scaling of the fixed-point 
numbers has to be considered wherever they are 
used. It is best to come up with a system of 
defining the scaling of widely-used system 
variables and stick with it. For instance, if the 
measurement being done to determine engine 
speed is only accurate to 1/4 RPM, define 
ENG-SPD-SCALE; as 4.0 through the use of a 
#define and make it accessible to any source file 
that needs to manipulate anything around engine 
speed. Use this scale factor for all engine speed 
related parameters to help keep the math 
complexity to a minimum. 

Another item to watch out for is casting of fixed- 
point numbers. If two 16-bit integers are multiplied 
and placed in a 32-lbit result, it may be necessary 
to cast the 16-bit numbers to a 32-bit number. 
This will let the conipiler know to keep the 32-bit 
result instead of chopping off the first 16 bits. The 
ANSI C standard defines that the result is based 
on the numbers being multiplied, added, or 
subtracted, not the size of the result. 

The last item to watch out for is making sure 
that you are truly using fixed-point numbers. 
Since the pre-compiler will evaluate constant 
expressions, constants can be floating-point 
numbers. Remember, though, to cast the result of 
these constant expressions to fixed-point 
numbers. Failure to do so will cause the compiler 
to call a floating-point library function. Many 
compilers allow the removal of the floating-point 
libraries from being pulled in by the linker. 
Removing the floating-point libraries will generate 
linker errors when the libraries are not found, so 
you can quickly s8ee which module is using 
floating-point math and correct it. 
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GENERAL USER OPTIMIZATIONS 

This section discusses techniques a 
programmer can use to improve coding efficiency. 
These items directly effect the way the compiler 
handles your code, and helps it to make further 
optimizations. The optimizations are listed as 
single entities, so that different ones can be used 
or not used. Some of the optimizations listed are 
specific to the size of platform, with a “small” 
platform being 8-bit or smaller, and a “large” 
platform being 32-bit or larger. A 16-bit platform 
could fit into either category, so it is important to 
try the recommendations out to see what works 
best on your platform. 

One user optimization is to set a direction for 
development, as far as optimizing for speed or for 
code size, and to what degree. This decision will 
depend on the current capabilities of your 
processor and platform, and the ease to expand 
the processor or memory. After a direction is 
chosen, then all programmers on the project can 
program with the same end result in mind. 

On smaller size microprocessors, it is 
important to choose the right data definition for 
the job if optimizing for speed. Try to use the base 
unit or smaller size of the microprocessor 
wherever possible, so the compiler can take 
advantage of using fast registers and built-in 
machine opcodes. The data listed below gives a 
relative sample of the length of time necessary to 
do multiplication and division operations on an 8- 
bit platform. This will be, of course, compiler 
dependent since the compiler will have to pull in 
special libraries to do the operations. This 
optimization can only be used if the accuracy and 
range of the data used is acceptable. 

8-bit multiply - 15 microseconds 
16-bit multiply - 160 microseconds 
32-bit multiply - 297 microseconds 

8-bit divide - 85 microseconds 
16-bit divide - 277 microseconds 
32-bit divide - 6685 microseconds 

If optimizing for speed, look for the opportunity 
to inline functions if the compiler doesn’t already 
optimize for it. lnlining functions places the code 
block of the function directly in place of the called 

function. This eliminates the process of pushing 
and pulling data off the stack. Local functions can 
then be added to a file to help organize the code 
without worrying about the extra time it takes to 
call a function. The negative impact of performing 
this optimization is when the inlined function is 
called more than once, resulting in increased 
code size. 

If optimizing for speed, avoid using pointers or 
taking the address of variables. This limits the 
compiler in using fast registers for the 
manipulation of data. Using pointers and de- 
referencing also uses extra steps in the compiled 
code to determine the location of the data before 
accessing it. The example below shows an 
example of data accessed through the use of a 
pointer, and data being accessed without a 
pointer. This will increase code size, and may also 
drive duplication of code. If optimizing for code 
size, it becomes more important to use pointers 
when performing operations on like sets of data. 
This will keep duplication of code at a minimum. 

Code using pointer: Assembler Output (34 clk): 

extern char x, y; ldab ‘y’ 
extern char *ptr[20]; clra 

asld 
void Example( void ) addd #ptr 
{ xgdx 

x = *ptr[y]; Idx 0,x 
1 ldab 0,x 

stab ‘x’ 
rtS 

Code without pointer: Assembler Output (13 clk): 

extern char x, data; 

void Example( void ) rtS 

{ 

I 

ldab data 
stab ‘x’ 

x = data; 

On smaller size microprocessors, when 
optimizing for speed, avoid the use of function 
arguments wherever possible. Use of function 
arguments causes parameters to be pushed and 
pulled off the stack wherever they are used. Try 
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re-structuring the code so that static variables are 
shared between the two functions if local to a file, 
or use global variables if not within a file. Creation 
of global variables may be considered a poor 
structured design practice, but this may be an 
appropriate trade off. 

On larger size microprocessors, when 
optimizing for speed, it is not necessary to avoid 
function arguments all together. Depending on 
the compiler used, it may allocate registers 
specifically to function argument passing. Data to 
be passed will be placed in these registers, for 
quicker access by the called function. This 
eliminates the need to use the stack for the 
arguments. The compiler will only be able to use 
these registers if the data being passed is equal 
to or smaller than the register size of the 
microprocessor. I f  optimizing for speed, 
remember there are also only a limited number of 
these registers available, so it still may become 
necessary to use static file variables or global 
variables for data sharing between functions as 
discussed in the previous paragraph. 

On smaller size microprocessors, where the 
number of registers is limited, declaring local 
variables as “static” may improve the execution 
speed of the code as well as decrease the size of 
the code. When the number of registers is limited, 
declaring variables as “static” gives them a fixed 
location in memory. This helps eliminate the 
variable being used in the stack space, and 
speeds up access to the variable. If it is non- 
static, then the code may have to push and pull 
items from the stack to access it. The example 
below shows how the assembly code is  
generated with a local variable as static and the 
other as non-static. This will have a definite 
negative impact to the amount of RAM used, 
since you are now using a fixed memory location. 

Code with local var: Assembler Output (23 clk): 

unsigned char k, n; des 

void Example( void ) 
{ tsx 

unsigned char j; stab 0,x 
j = k + n ;  ins 

1 rtS 

ldab n 
addb k 

Code with static var: Assembler Output (14 clk): 

unsigned char k, n; ldab n 
addb k 

, void Example( void ) stab j 
rtS 

static unsigned char j; 
j = k + n ;  

{ 

I 
On larger size microprocessors, it may not 

make sense to declare items as static. Larger size 
microprocessors have a greater availability of fast 
registers. The compiler will allocate a number of 
these for  local variables. These larger 
microprocessors can then perform the required 
operations without going out to the RAM space 
and placing this data on the stack. The number of 
local variables that can be declared using these 
registers is compiler and microprocessor specific. 
Declaring a number of local variables and then 
checking the asslembly output will show the 
number available. Based on this number, you 
may wish to have! the most often used locat 
variables declared as non-static to use the 
registers, and the others to be declared as static. 
This will have a negative impact to the RAM size 
as discussed in the previous paragraph, but may 
improve speed and overall ROM code size. 

If optimizing for code size, it is important to 
develop a standard set of base library functions 
that can be used by all the programmers. This 
would possibly include a standard filter algorithm, 
a standard searching algorithm, etc. Write one 
algori thm that f i ts  a l l  the needs of the 
programmers. If a programmer needs a filtering 
routine for 32-bit nlumbers, and another needs 
one for 16-bit numbers, write a single routine that 
processes both 16- and 32-bit numbers. This 
would have a negaitive impact to code speed if 
your microprocessor cannot perform 32-bit 
operations as quicklly as 16-bit operations. 

Another user optimization is loop unrolling. 
This is unnecessary if your compiler automatically 
does loop unrollingi when optimizing for speed. 
Loop unrolling is the process of taking looped 
code and repeating the number of iterations of 
that code without looping. This would increase 
code size but helps to increase the speed. If you 
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have to manually unroll the loops in your code it 
also makes the code less readable and harder to 
maintain. The best way to unroll loops is have 
your compiler take care of it for you, so the code 
can be left with the “for” and “do-while” loops left 
in. There is usually an iteration count the 
optimizer uses to determine if the loop should be 
unrolled, such as three or less iterations. This 
number is sometimes a user specified option. 

The last user optimization helps the compiler 
optimizer directly. Consider making use of the 
keyword type-qualifiers “volatile” and “const” in 
front of declared variables wherever possible. 
This helps the compiler to determine the type of 
data when optimizing. Using the keyword 
“volatile” will tell the compiler to re-access the 
data type wherever it is used in the code. Leaving 
this keyword out may drive the compiler to access 
the data once at the start of the code block and 
place the data in a register. The compiled code 
will then reference this register wherever it is used 
in the code instead of the actual data location. 
Using the keyword “const” will help the compiler 
to make memory optimizations. Many compilers 
will keep declared constants in read only memory, 
rather than RAM. Pointers declared as constant 
will also help the compiler to not continually re- 
evaluate where a pointer is pointing before it is 
used. The keywords “volatile” and “const” can be 
interpreted differently depending on the compiler 
used, so check how they are used on your 
platform. 

S 

The user optimizations that were discussed in 
the previous section should be considered as 
separate Optimizations to make based on the 
platform being used. They should be utilized in 
conjunction with having a good compiler 
optimizer. It is also important to determine if fixed- 
point math can be used as opposed to floating- 
point emulation math. Evaluating all three of 
these issues will get you on your way writing C 
code with optimizing principles in mind. 

Since C is considered a relatively “low-level” 
language, it is important to look at the assembler 
output from the C compiler and look for 
bottlenecks. Sometimes the bottlenecks and 

~ 

580 

delays may not be require rewriting the code, but 
may provide valuable information for the next 
code iteration. Sometimes restructuring of the 
code will also aid the compiler’s optimization 
algorithm, producing very positive results. 

The suggestions and ideas presented in this 
paper should be tried out on your particular 
platform and compiler. It is also important to 
temper some of the recommendations with the 
way your project’s code is structured. By far the 
best and easiest way to optimize your code is 
having your compiler do it for you. It is also 
important to determine if fixed-point can be used 
as opposed to floating-point emulation. Last of all, 
do your best while coding to keep code size or 
speed in mind and make efficient use of the stack, 
registers, and CPU bandwidth. 


