
July 2005 85

E M B E D D E D C O M P U T I N G

D espite considerable progress
in software and hardware
techniques, many recent com-
puting advances do more
harm than good when embed-

ded computing systems absolutely
must meet tight timing constraints.

For example, while synchronous dig-
ital logic delivers precise timing deter-
minacy, advances in computer archi-
tecture and software have made it diffi-
cult or impossible to estimate or predict
software’s execution time. Moreover,
networking techniques introduce vari-
ability and stochastic behavior, while
operating systems rely on best-effort
techniques. Worse, programming lan-
guage semantics do not handle time
well, so developers can only specify tim-
ing requirements indirectly.

Thus, achieving precise timeliness in
a networked embedded system—an
absolutely essential goal—will require
sweeping changes.

CORE ABSTRACTION
Contemporary computer science has

taught us that a Turing machine can
specify everything that can be com-
puted. Computation is accomplished
by a terminating sequence of state
transformations. A computable func-
tion provides a map from a bit
sequence to a bit sequence. This core
abstraction underlies the design of most
computers, programming languages,
and operating systems currently in use.

Unfortunately, it does not fit em-
bedded software well. If, however,
“embedded software” is simply “soft-
ware on small computers,” then this
abstraction fits reasonably well. In this
view, embedded software differs from
other software only in its resource lim-
itations: small memory, small data
word sizes, and relatively slow clocks.
In this view, the embedded software
problem is one of optimization.

Optimizing solutions emphasize effi-
ciency: Engineers write software at a
very low level in assembly code or C,
avoid operating systems with a rich
suite of services, and use specialized
computer architectures such as pro-
grammable DSPs and network proces-
sors that provide hardware support for
common operations. These solutions
have defined the practice of embedded
software design and development for
the past 25 years or so.

MUCH PROGRESS, LITTLE CHANGE
Given the semiconductor industry’s

ability to keep pace with Moore’s law,

the resource limitations of 25 years
ago should have almost entirely evap-
orated by now. Yet embedded soft-
ware design and development have
changed little.

This lack of change may stem from
the extreme competitive pressure in
products such as consumer electronics,
which are based on embedded soft-
ware and reward only the most effi-
cient solutions. There are, however,
many examples where functionality
and reliability have proven more
important than efficiency, which makes
it arguable that factors other than—
and possibly even as important as—

resource limitations have influenced
embedded software’s evolution.

Embedded software differs from
other software in more fundamental
ways. Examining why engineers write
embedded software in assembly code
or C reveals that efficiency is not their
only concern, and may not even be
their main one. Reasons for this could
include the need to count cycles in a
critical inner loop—not to make it fast,
but rather to make it predictable.

No widely used programming lan-
guage integrates a way to specify timing
requirements or constraints. Instead,
the abstractions they offer focus on
scalability—inheritance, dynamic bind-
ing, polymorphism, memory manage-
ment—and, if anything, further
obscure timing. Consider, for example,
the impact of garbage collection on
timing.

Counting cycles becomes extremely
difficult on modern processor archi-
tectures, where memory hierarchy,
dynamic dispatch, and speculative exe-
cution make it nearly impossible to tell

Absolutely
Positively on Time:
What Would It Take?
Edward A. Lee, University of California, Berkeley

For embedded
computing to realize
its full potential,
we must reinvent
computer science.

86 Computer

The most influential 20th-century
computing abstractions speak only
weakly about concurrency, if at all. Even
the core 20th-century notion of com-
putable is at odds with the requirements
of embedded software. In this notion,
useful computation terminates, but ter-
mination is undecidable. In embedded
software, termination is failure—yet to
get predictable timing, subcomputations
must decidably terminate.

TIMING’S CRUCIAL ROLE
Embedded systems consist of soft-

ware and hardware integrations in
which the software reacts to sensor
data and issues commands to hard-
ware actuators.

The physical system forms an inte-
gral part of the design, and the soft-
ware must be conceptualized to
operate in concert with it. Physical sys-
tems are intrinsically concurrent and
temporal. Actions and reactions hap-
pen simultaneously and over time, and
the metric properties of time play an
essential part in the system’s behavior.

Prevailing software methods abstract
away time, replacing it with ordering.
In imperative languages such as C,
C++, and Java, the program defines the
order of actions, but not their timing.

THE PROBLEM WITH THREADS
Another abstraction, threads or

processes, overlays this prevailing
imperative abstraction. The operating
system typically provides this alterna-
tive abstraction, but occasionally the
programming language does so.

Threads mainly focus on providing
an illusion of parallelism in funda-
mentally sequential models, and they
work well only for modest levels of
concurrency or for highly decoupled
systems that share resources, where
best-effort scheduling policies are suf-

how long it will take to execute a par-
ticular piece of code. Worse, execution
time is context-dependent, which leads
to unmanageable variability. Still
worse, programming languages usually
are Turing complete, which conse-
quently makes execution time unde-
cidable in general.

To get predictable timing, embedded
software designers must choose alter-
native processor architectures such as
programmable DSPs, and they must use
disciplined programming techniques
that, for example, avoid recursion.

Engineers also stick to low-level pro-
gramming because embedded software
typically must interact with hardware
specialized to the application. In con-
ventional software, interaction with
hardware is the operating system’s
domain. Typically, application design-
ers do not create device drivers, nor do
these drivers form part of an applica-
tion program. In the embedded soft-
ware context, however, generic
hardware interfaces are rare.

Indeed, higher-level languages do
not support creating interfaces to hard-
ware. For example, although concur-
rency is common in modern program-
ming languages such as Java, which
has threads, no widely used program-
ming language includes the notion of
interrupts in its semantics. Yet the con-
cept is not difficult and can be built
into programming languages. For
example, nesC and TinyOS, which are
widely used for programming sensor
networks, support interrupts at the
language level.

Considering these factors, we can see
that embedded software engineers do
not avoid the many recent improve-
ments in computation out of igno-
rance. Rather, they seek to avoid a
mismatch of the core abstractions and
the technologies built upon them.

In embedded software, time matters,
yet computing’s 20th-century abstrac-
tions hold time to be irrelevant. In
embedded software, concurrency and
interaction with hardware are intrinsic
because embedded software engages the
physical world in nontrivial ways.

ficient. Indeed, several recent innova-
tive embedded software frameworks,
such as The MathWorks’ Simulink,
UC Berkeley’s nesC and TinyOS, and
Esterel Technologies’ Lustre/SCADE
all provide concurrent programming
languages with no threads or processes
in the programmer’s model.

Users generally hold embedded soft-
ware systems to a much higher reliabil-
ity standard than general-purpose
software. Often, failures in the software
can be life threatening. The prevailing
concurrency model in general-purpose
software does not achieve adequate reli-
ability. This model makes it extremely
difficult for humans to understand the
interaction between threads. Although
we can argue that concurrent compu-
tation is inherently complex, threads
make it far more so because any part of
the system’s state can change between
any two atomic operations.

The basic techniques for controlling
this interaction use semaphores and
mutual exclusion locks, methods that
date back to the 1960s. Many uses of
these techniques lead to deadlock or
livelock. In general-purpose computing,
this inconvenient event typically forces
a program restart or even a reboot.

In embedded software, however,
such errors can be far more than incon-
venient. Even in general-purpose soft-
ware systems, interactions with or
between device drivers built on these
low-level concurrency mechanisms
often cause failures. Moreover, devel-
opers frequently write software with-
out sufficiently using interlock
mechanisms, which results in race con-
ditions that yield nondeterministic pro-
gram behavior.

In practice, testing cannot easily
detect errors from the misuse or nonuse
of semaphores and mutual exclusion
locks. Code can be exercised for years
before a design flaw appears.

Static analysis techniques, such as
Sun Microsystems’ LockLint, can help,
but both conservative approximations
and false positives often thwart these
methods, thus they are not widely used
in practice.

E m b e d d e d C o m p u t i n g

In embedded software, time
matters, yet computing’s
20th-century abstractions
hold time to be irrelevant.

Reliability through clarity
We can argue that multithreaded

programs’ unreliability stems at least in
part from inadequate software engi-
neering processes. For example, better
code reviews, specifications, compli-
ance testing, and development process
planning can help solve these problems.

Given the difficulty of understand-
ing programs that use threads, how-
ever, no amount of process improve-
ment will make such a program reli-
able if its developers cannot under-
stand it. Formal methods can help
detect flaws in threaded programs and,
in the process, can improve the
designer’s understanding of a complex
program’s behavior. But if the basic
mechanisms fundamentally make pro-
grams difficult to understand, these
improvements will fall short of deliv-
ering reliable software.

Prevailing industrial practice in
embedded software relies on bench
testing for concurrency and timing
properties. This has worked reasonably
well because programs are small and
the software is encased in a box where
no outside connectivity can alter its
behavior. However, applications today
demand that embedded systems be fea-
ture-rich and networked, so bench test-
ing and encasing become inadequate.

In a networked environment, it is
impossible to test the software under
all possible conditions because the
environment is unknown. Moreover,
general-purpose networking tech-
niques themselves make program
behavior much more unpredictable.

REINVENTING COMPUTER SCIENCE
Achieving concurrent and net-

worked embedded software that can
be absolutely positively on time—say,
to the precision and reliability of digi-
tal logic—will, again, require sweep-
ing changes:

• The core abstractions of comput-
ing must be modified to embrace
time.

• Computer architectures must
deliver precisely timed behaviors.

July 2005 87

Editor: Wayne Wolf, Dept. of Electrical
Engineering, Princeton University,
Princeton NJ; wolf@princeton.edu

To date, however, all these hardware
techniques largely lack programming
language and compiler support.

On the software side, operating sys-
tems such as TinyOS provide simple
ways to create thin wrappers around
hardware, and, with nesC, alter the
OS/language boundary. Programming
languages such as Lustre/SCADE pro-
vide understandable and analyzable
concurrency. Embedded software lan-
guages such as Simulink provide time
in their semantics. Bounded pause-time
garbage collectors provide memory
management with timing determinism.

On the networking side, time-trig-
gered architectures provide determin-
istic media access and improved fault
tolerance. Network time synchroniza-
tion methods such as IEEE 1588 pro-
vide time concurrence at nanosecond
resolutions far finer than any proces-
sor or software architectures can
exploit today.

On the theory side, hybrid systems
theory provides a semantics that is
both physical and computational.

W ith so many promising starts,
the time is ripe to pull these
techniques together and build

21st-century embedded computer sci-
ence. �

Edward A. Lee is a professor, chair of
the Electrical Engineering Division,
and associate chair of Electrical Engi-
neering and Computer Sciences at the
University of California, Berkeley.
Contact him at eal@eecs.berkeley.edu.

• The hardware–software boundary
must be rethought.

• Networking techniques must pro-
vide time concurrence.

• Programming languages must
embrace time and concurrency in
their core semantics.

• Virtual machines must rely less on
just-in-time compilation.

• Power management techniques
must rely less on voltage and clock

speed scaling or must couple these
with timing requirements.

• Operating systems must rely less
on priorities to indirectly specify
timing requirements.

• Memory management techniques
must account for timing con-
straints.

• Complexity theory must morph
into schedulability analysis.

• Software engineering methods
must change to specify and analyze
software’s temporal dynamics.

• Developers must rethink the tra-
ditional boundary between the
operating system and the pro-
gramming language.

In essence, we must reinvent com-
puter science. Fortunately, we have
quite a bit of knowledge and experi-
ence to draw upon.

Architecture techniques such as soft-
ware-managed caches promise to
deliver much of the benefit of memory
hierarchy without the timing unpre-
dictability. Pipeline interleaving and
stream-oriented architectures offer
deep pipelines with deterministic exe-
cution times. FPGAs with processor
cores provide alternative hardware and
software divisions.

Applications today
demand that embedded
systems be feature-rich

and networked, so bench
testing and encasing
become inadequate.

