Embedded Systems
Final examination. June 18, 2021

Time limit: 150 minutes.

1 Fixed point arithmetic

We want to compute a * s; in C language, where uint8_t s;=35. The parameter a must be
fixed-point coded with 8 bits.

1.

If we code a with {B, F'} = {8, F'} (a once coded is named ay) and we want to approximate
a * s1 by an unsigned integer doing uint8_t y= (ag * s1) >> S, what is the value of S to
be used?

. Now consider a = 1.6 and {B, F'} = {8,0}. Compute uint8_t y= (ag*s1) >> S. Specify

the source of the difference between the approximated value y and the exact value a * s1.
Repeat the previous question using now{B, F'} = {8,1}

Repeat the previous question using now{B, F'} = {8,3}

2 Fixed point arithmetic

At the end of the second fixed point arithmetic class we talk about how to code the parameter
a; = 2cos(2nF;/F;), for the whole range of DTMF frequencies F; when using the Goertzel
algorithm. Knowing that Fs = 8 kHz, Fy = 697 Hz and F7; = 1633 Hz,

1.

2.

Determine the minimum a,,;, and maximum a,,.,; values of the parameter a.
Use {B, F'} = {8,4} to code ayin and amaz-
Compute the relative error when computing @i, and amq; with this codification.

Compute the relative error of the actual frequencies Fy and F%; that are being computed by
the Goertzel algorithm.

. Propose your {B, F'} values to ensure that the relative error for Fy is lower that 10%.

3 Embedded system design introduction

1.

In the context of of the subject Embedded Systems point out the differences between the
following terms: embedded systems (ES), cyber-physical systems (CPS), Internet of things
(IoT) and industry 4.0 (14.0).

4 The Goertzel algorithm

The Goertzel algorithm consist in the following two-stage filter:
a) Sp = Tp + 2c08(wp)Sp—1 — Sn—2
b) yn = s, — e IO

The first stage must be computed for each n = 0...N — 1 sample and the second stage just the
final sample n =N — 1.

1. Prove that instead of two-stage filter, the following one-stage filter could be used to obtain
the same result.

C) Yn = Tp + e‘jwoyn—l

2. Compare the computations that must be made for each implementation (two-stage or one-

stage) and decide which one to use in a microcontroller like the one find in your Arduino
UNO development board.

5 Embedded system design introduction

1. Comment on the following sentence: Cyber-physical systems must be dependable.

2. Define safety, security, confidentiality, reliability, repairability and availability.

6 FSM in VHDL

1. Consider a state diagram (or graph) that describes a FSM. Can we say if we are dealing
with a Moore or Mealy FSM just looking at the transition arc?

2. Draw the block diagram of a FSM.

7 FSM in VHDL

1. Describe how to implement a FSM using different number of process and point out their
differences.

8 FPGA and VHDL: synchronizing clock enable with data

A signal called clk_en_in is high the first rising edge of clk after data_in is ready and is low the
next rising edge. We want to design an entity in order to update data_out from data_in every
two clk_en_in. In addition, a signal called clk_en_out must be high the first rising edge of clk
after data_out is ready and must be low the next rising edge. The following VHDL code tries to
do that.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity se_exam_2017 is

port (clk : in std_logic;--100kHz
clk_en_in : in std_logic; - 10kHz
data_in : in std_logic;
clk_en_out: out std_logic;
data_out : out std_logic
);

end entity;

architecture arch_1 of se_exam_2017 is
signal n : unsigned (7 downto 0):= to_unsigned(0,8);
begin
process (clk)
begin
if rising_edge(clk) then
if clk_en_in = ’1’ then
if n = 1 then
clk_en_out <=’17;
data_out <= data_in;
n <= to_unsigned (0,8);
else
clk_en_out <=’0’;
n <= n+1;
end if;
end if;
end if;
end process;
end architecture;

1. Unfortunately, clk_en_out is not well generated. Draw the actual digital waveform (clk,
clk_en_in and clk_en_out).

2. Modify the code and draw the right digital waveform.

9 FPGA: hardware reuse

1. What is the strategy behind hardware reuse? Or, if you prefer, what do we lose and what
do we gain?

10 C: storage class modifiers

1.

Argue why we should use the const modifier even if the code is going to work well without
it.

. Can we have a variable with both, const and volatile, modifiers, like in

volatile const a; 7

11 C: optimization

1.

2.

Comment on the main optimizations flags that can be used.
Do you think that the -O0 optimization flag has any utility?

What happens when many developers are involved in the same project coding different
parts of it?

Which optimization flag have you used in your DTMF project and why?

12 FPGA: the look up table

1.

2.

What is the LUT size of the FPGA (Cyclone IV EP4CE22F17C6N) that you have used?

Describe an experiment to verify this size.

13 FPGA: soft and hard multipliers

1.

2.

How many hard multipliers do you think will be used to perform and 16x*16 bits multipli-
cation using 9x9 bits hard multipliers.

After experiencing with the DEO-Nano board do you have something to say?

14 Serial communication

1.

Samples of 8 bit, sampled at a sampling frequency Fjs, are send from an Arduino to the
Raspberry Pi (RasPi) through a 57 600 bps serial connection (USART to USB bridge) using
1-start-bit and 1-stop-bit. What is the maximum Fs you could use?

. Consider the previous Arduino trying to send samples sampled at Fy = 8 kHz through a

57600 bps serial connection. What happens? Quantify the effect.

The measured maximum, mean and minimum time used by the RasPi B 4 to read L bytes,
for any L between 1 and 1024, stored in the system buffer are approximately 500 us, 450 us
and 300 us respectively. Now consider the following code (in the next questions ignore the
execution time of the print and the time.time() functions).

-*- coding: utf-8 -*-

import time

import numpy

import serial

parameters
L=...
open, wait and clean serial port
ser = serial.Serial(’/dev/ttyACMO’, baudrate , timeout=1)
time.sleep (2)
ser.flushInput ()
while 1:
tO=time.time ()
x=ser .read (L)
tl=time.time ()
print t1-tO

a) If, as in the previous question, Arduino is sending samples at Fs = 8 kHz through a
57 600 bps serial connection to the RasPi, what is the mean of the printed value t; —tg?
Let L =1.

b) Now let L = 100.

4. Now we add some code to compute something (e.g. an implementation of the Goertzel
algorithm) after reading the serial port.

while 1:
tO=time.time ()
x=ser.read (205)
compute_something (x)
tl=time.time ()
print t1-tO

a) Consider an Arduino sending samples at Fy = 8kHz through a 115200bps serial
connection to the RasPi. The mean of the printed value t; —ty = 25.625 ms. Can you
determine the execution time of the compute_something() function? Can you limit its
value?

b) Repeat the previous question considering that the mean of the printed value ¢; —tg =
27ms. What percentage of the samples are lost?

c) Repeat the two previous questions changing the baud rate from 115.2 kbps to 250 kbps.

5. If the operating system of the RasPi makes us wait 100 ms, what is the maximum sampling
frequency Fy at which samples could arrive without losing them, considering that the size
of the system buffer is 4095 bytes? Consider the best case, i.e. when the buffer is empty.

15 Contact bounce

We presented some debouncing solutions to the contact bounce problem inherent to switches.

1. Point out the different advantages and disadvantages between hardware and software solu-
tions without describing any of them.

2. Some of these solutions needed to be tuned for each contact while others, the so called
universals solutions, not. Enumerate the universals solutions and describe one of them in
detail.

	Fixed point arithmetic
	Fixed point arithmetic
	Embedded system design introduction
	The Goertzel algorithm
	Embedded system design introduction
	FSM in VHDL
	FSM in VHDL
	FPGA and VHDL: synchronizing clock enable with data
	FPGA: hardware reuse
	C: storage class modifiers
	C: optimization
	FPGA: the look up table
	FPGA: soft and hard multipliers
	Serial communication
	Contact bounce

