
U P C

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Disseny i Programació

de Sistemes Electrònics
@

Embedded Systems

Final exam. June 6, 2017

Duration: 3 hours. Last revision day: June 27

1 AVR and C: execution time

A common bad practice during the development of the DTMF project has been the definiti-
on of all variables as global and volatile. The execution time of the following code inside
TIMER0 COMPA vect is 8µs and inside if (flag){} is 22µs.

#inc lude <av r / i n t e r r u p t . h>
#inc lude <s t d b oo l . h>
#inc lude < s t d i n t . h>
#inc lude ”adc . h”
#inc lude ” tmr0 . h”

#def ine N 200 // number o f samp les
#def ine a (i n t 3 2 t)441 // c o e f f i c i e n t s c a l e d ∗256 f o r Fa=697 Hz
#def ine th 1e6

v o l a t i l e i n t 1 6 t s1=0, s2=0, s1 copy=0, s2 copy=0, sn=0;
v o l a t i l e u i n t 8 t xn=0,n=0;
v o l a t i l e boo l f l a g=f a l s e ;
v o l a t i l e u i n t 3 2 t X=0;

vo id s e tup (){
DDRD |=(1<<DDD4) ; // p in 4 Ardu ino as an output .
DDRD |=(1<<DDD5) ; // p in 5 Ardu ino as an output .
DDRB |=(1<<DDB5) ; // p in 13 Ardu ino as an output .
s e tup tmr0 (2 49 , 8) ; // samp l ing at 8kSps
setup ADC (5 , 5 , 1 6) ; start ADC () ; s e i () ;

}

i n t main (vo id){
s e tup () ;
whi le (1){

i f (f l a g){
PORTD |= (1<<PD5) ;
X=(i n t 3 2 t) s1 copy ∗ s1 copy+(i n t 3 2 t) s2 copy ∗ s2 copy −(a∗ s1 copy >>8)∗ s2 copy ;
i f (X>th){PORTB |= (1<<PB5) ; }
e l s e {PORTB &= ˜(1<<PB5) ; }
f l a g=f a l s e ;
PORTD &= ˜(1<<PD5) ;

}
}
re tu rn 0 ;

}

ISR (TIMER0 COMPA vect){
PORTD |= (1<<PD4) ;
xn=read8 ADC () ; start ADC () ; // r e ad s 8 b i t s and s t a r t s a new ADC con v e r s i o n
sn=xn+(a∗ s1>>8)−s2 ; s2=s1 ; s1=sn ; n++;// Go e r t z e l a l g o r i t hm
i f (n==N){ s1 copy=s1 ; s2 copy=s2 ; s1=0; s2=0;n=0; f l a g=t r u e ;}
PORTD &= ˜(1<<PD4) ;

}

1. Try to reduce the execution time by just changing the type-qualifiers (const, volatile),
the storage class (static) and the place of definition of each variable. Using this strategy
the execution time has been reduced inside TIMER0 COMPA vect by 15% and inside if

(flag){} by 7.5%.

2. Initialize at the right value only the variables that need it.

2 AVR and C: CPU usage

Consider an implementation of the DTMF project in C using a sampling frequency Fs = 10 kHz
and windows made of N = 100 samples. The execution time of the function compute sample()

is 40µs. The execution time of the function compute power() is 420µs when interruptions are
disabled. In the following consider all other execution times zero.

// i n c l u d e , d e f i n e . . .
#def ine N 100
// v a r i a b l e d e f i n i t i o n , f u n c t i o n s . . .

i n t main (vo id){
// v a r i a b l e d e f i n i t i o n , s e tup . . .
whi le (1){
i f (f l a g){
PORTD |= (1<<PD5) ;
compute power () ; // power o f 8 f r e q u e n c i e s
f l a g=f a l s e ;
PORTD &= ˜(1<<PD5) ;

}
}
re tu rn 0 ;

}

ISR (TIMER0 COMPA vect){
// v a r i a b l e d e f i n i t i o n . . .
PORTD |= (1<<PD4) ;
xn=read8 ADC () ; start ADC () ;
compute sample () ; // Go e r t z e l a l g o r i t hm f o r 8 f r e q u e n c i e s
n++;
i f (n==N){
// copy , i n i t i a l i z e . . .
f l a g=t r u e ;
}
PORTD &= ˜(1<<PD4) ;

}

1. Compute the CPU usage (in %) due to the function compute sample().

2. Draw the signals PORTD4 and PORTD5 seen on an oscilloscope triggered with the rising edge
of PORTD5 with the base time at 100µs.

3. Compute the overall CPU usage (in %) due to compute sample()and compute power() .

U P C

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Disseny i Programació

de Sistemes Electrònics
@

3 FPGA and VHDL: synchronizing clock enable with data

A signal called clk en in is high the first rising edge of clk after data in is ready and is low the
next rising edge. We want to design an entity in order to update data out from data in every
two clk en in. In addition, a signal called clk en out must be high the first rising edge of clk
after data out is ready and must be low the next rising edge. The following VHDL code tries to
do that.

l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . nume r i c s t d . a l l ;

en t i t y se exam 2017 i s
port (c l k : i n s t d l o g i c ;- -100kHz

c l k e n i n : i n s t d l o g i c ;- - 10kHz
d a t a i n : i n s t d l o g i c ;
c l k e n o u t : out s t d l o g i c ;
d a t a ou t : out s t d l o g i c
) ;

end en t i t y ;

a r ch i t e c t u r e a r ch 1 of se exam 2017 i s
s i g n a l n : uns i gned (7 downto 0):= t o un s i g n ed (0 , 8) ;

begin
process (c l k)
begin

i f r i s i n g e d g e (c l k) then
i f c l k e n i n = ’1 ’ then

i f n = 1 then
c l k e n o u t <=’1 ’;
d a t a ou t <= da t a i n ;
n <= to un s i g n ed (0 , 8) ;

e l s e
c l k e n o u t <=’0 ’;
n <= n+1;

end i f ;
end i f ;

end i f ;
end process ;

end a r ch i t e c t u r e ;

1. Unfortunately, clk en out is not well generated. Draw the actual digital waveform (clk,
clk en in and clk en out).

2. Modify the code and draw the right digital waveform.

4 ADC: changing the analog reference

During the project course we have used different platforms to detect a DTMF signaling. When
working with Arduino we have taken the eight most significant bits of the 10-bit ADC of the
AVR microcontroller with a range that goes from ground to 5 V. When working with DE0-Nano
we have taken the eight most significant bits of the 12-bit ADC, external to the FPGA, with a
range that goes from ground to 3.3 V.

When testing one of the DTMF signal test with Arduino we used thAV R = 106 (i.e. what
during the project we called the threshold, a level with which to compare the power of each one
of the DFT components computed by the Goertzel algorithm).

1. Find out the value of the threshold, thFPGA, that should be used with the FPGA to obtain
the same results with exactly the same DTMF signal test. Consider that in all platforms
we use the same DTMF signal test, with a peak-to-peak amplitude of 3 Vpp.

5 Serial communication

1. Samples of 8 bit, sampled at a sampling frequency Fs, are send from an Arduino to the
Raspberry Pi (RasPi) through a 57 600 bps serial connection (USART to USB bridge) using
1-start-bit, 1-parity-bit and 1-stop-bit. What is the maximum Fs you could use?

2. Consider an Arduino trying to send samples sampled at Fs = 8 kHz through a 57 600 bps
serial connection. What happens? Quantify the effect.

3. The measured maximum, mean and minimum time used by the RasPi B + to read L bytes,
for any L between 1 and 1024, stored in the system buffer are approximately 500µs, 450µs
and 300µs respectively. Now consider the following code (in the next questions ignore the
execution time of the functions print and time.time()).

import t ime
import s e r i a l
paramete r s
L= . . .
open , wa i t and c l e a n s e r i a l po r t
s e r = s e r i a l . S e r i a l (’ / dev /ttyACM0 ’ , baud ra te , t imeout=1)
t ime . s l e e p (2)
s e r . f l u s h I n p u t ()
whi le 1 :

t0=t ime . t ime ()
x=s e r . r ead (L)
t1=t ime . t ime ()
p r i n t t1−t0

a) If, as in the previous question, Arduino is sending samples at Fs = 8 kHz through
a 57 600 bps serial connection to the RasPi, which is the mean of the printed value
t1 − t0? Let L = 1.

b) Now let L = 100.

4. Now we add some code to compute something (e.g. an implementation of the Goertzel
algorithm) after reading the serial port.

whi le 1 :
t0=t ime . t ime ()
x=s e r . r ead (197)
compute someth ing (x)
t1=t ime . t ime ()
p r i n t t1−t0

a) Consider an Arduino sending samples at Fs = 8 kHz through a 115 200 bps serial
connection to the RasPi. The mean of the printed value t1− t0 = 24.625 ms. Can you

U P C

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Disseny i Programació

de Sistemes Electrònics
@

determine the execution time of the function compute something()? Can you limit
its value?

b) Repeat the previous question considering that the mean of the printed value t1− t0 =
28 ms. What percentage of the samples are lost?

5. If the operating system of the RasPi makes us wait 250 ms, what is the maximum sampling
frequency Fs at which samples could arrive without losing them, considering that the size
of the system buffer is 4095 bytes? Consider the best case, i.e. when the buffer is empty.

6 Power consumption

Consider that the consumption of a RasPi with some peripherals is 5 W. It is powered by a power
supply system made by 2 NiMH AA batteries, each one with a nominal voltage of 1.2 V and a
capacity C0 = 2200 mAh (for any current discharge, to make it easy), followed by an appropriate
DC-DC converter (with a 92% efficiency).

1. Compute the running time of the RasPi before the batteries are empty.

7 DTMF project course

1. You want to modify the eight standard frequencies used in the DTMF signaling with a
sampling frequency Fs = 8 kHz. Your goal is that the DFT components computed by the
Goertzel algorithm be the same frequencies used in the DTMF signaling. How will you
proceed?

2. You want to design your own DTMF signaling (taking windows of 25 ms) increasing the
eight frequencies used by the standard to the maximum allowed by your chosen platform.
This way, instead of 4 low freq x 4 high freq =16 DTMF signals when using 8 different
frequencies, you will have 4 low freq x 5 high freq =20 DTMF signals when using 9 dif-
ferent frequencies, 5 low freq x 5 high freq =25 DTMF signals when using 10 different
frequencies, and so on. You are in the stage of choosing your development platform. Based
on the following results, obtained during this DTMF project course, make your decision:
Arduino/ATmega328P: 45% CPU usage. DE0-Nano/Altera Cyclone IV EP4CE22F17C6N
FPGA: 1245/22300 logic elements; 16/132 multipliers. RasPi B+: 20 ms computation time;
consider zero reading time from the system serial buffer. RasPi 3 B+: 4 ms computation
time; consider zero reading time from the system serial buffer.

3. You have to build your own DTMF signaling in an FPGA. As we have seen in classroom,
the three 16-bit multiplications involved in the computation of the power of one frequency
use six embedded 9-bit multipliers. This power computation lasts one clock of the 256
available between power computations. We have also seen that the two embedded 9-bit
multipliers needed in each one of the 16-bit multiplications can be shared at the cost of
incrementing each power computation time: now each power computation lasts five clocks
of the 256 available between power computations. In an FPGA with four embedded 9-bit
multipliers, how many frequency power computations could we make?

4. Given the poor computation time results running a code written in python over the old
RasPi B+, propose the use of other languages to improve these results.

	AVR and C: execution time
	AVR and C: CPU usage
	FPGA and VHDL: synchronizing clock enable with data
	ADC: changing the analog reference
	Serial communication
	Power consumption
	DTMF project course

