Digital Systems - 1

Combinational Constructs

Pere Pala Schonwalder

iTIC http://itic.cat

February 2025

Boolean functions
» f(AB,C)=A-B+A-C

library ieee;
use ieee.std_logic_1164.all;

entity boolean_function is
port(A, B, C : in std_logic;
f : out std_logic);
end boolean_function;

architecture my_arch of boolean_function is
begin

f <= (A and B) or ((mot A) and (mnot C));
end ;

» Precedence rules: Highest priority first

not
and
or
nand
nor
Xor
xXnor

Traffic light controller

» Define a bus: one-hot encoding (red, yellow, green)

entity light_controller is

port(lights_in : in std_logic_vector (3 downto 1);
enable : in std_logic;
lights_out : out std_logic_vector (3 downto 1));

end entity light_controller;

architecture and_enable of light_controller is
begin
lights_out (1) <= lights_in(1) and enable;
lights_out (2) <= lights_in(2) and enable;
lights_out (3) <= lights_in(3) and enable;
end architecture and_enable;

» Alternative

architecture conditional_enable of light_controller is
begin
lights_out <= lights_in when enable = ’1’ else
n 000 n ;
end architecture conditional_enable;

Traffic light controller. Remarks

» Buses

> std_logic_vector (3 downto 1)
> std_logic_vector (7 downto 0)

» when... else...

signal_name <= valuel when conditionl else
value2 when condition2 else
value3 when condition3 else
default_value;

» The first true condition determines the assignment
» There is priority!
» Ensure to cover all cases, for instance, using else

7 segment decoder

» Input: BCD coded
» Output: 7 segment

entity BCDdecoder is
port (BCD_in : in

std_logic_vector (3 downto

segments_out : out std_logic_vector (6 downto

end entity BCDdecoder;

architecture my_arch of BCDdecoder is

begin
segments_out <= "1111110"
"0110000"
"1101101"
"1111001"
"0110011"
"1011011"
"1011111"
"1110000"
"1111111"
"1110011"

end architecture my_arch;

when
when
when
when
when
when
when
when
when
when

BCD_in
BCD_in
BCD_in
BCD_in
BCD_in
BCD_in
BCD_in
BCD_in
BCD_in
BCD_in

"0000"
"0001"
"0010"
"0011"
"0100"
"0101"
"0110"
"o111"
"1000"
"1001"

else
else
else
else
else
else
else
else
else
else

0);
0));

7 segment decoder /2

> Less typing: with ... select ...

entity BCDdecoder is
port (BCD_in : in std_logic_vector (3 downto 0);
segments_out : out std_logic_vector (6 downto 0));
end entity BCDdecoder;

architecture my_arch of BCDdecoder is
begin
with BCD_in select
segments_out <= "1111110" when "0000",
"0110000" when "0001",
"1101101" when "OO10",
"1111001" when "0011",
"0110011" when "0100",
"1011011" when "O0101",
"1011111" when "O0110",
"1110000" when "O111",
"1111111" when "1000",
"1110011" when "1001",
——————— " when others;
end architecture my_arch;

Equivalent Constructs

» Functionally equivalent

» with... select
» when... else

> Use with... select for multi-condition multiplexers
(compact, clearer).

» Use when... else for simple conditional assignments or
two-way selections (clearer and often more intuitive).

7 segment decoder with a blanking input

entity BCDdecoder is

port (BCD_in : in std_logic_vector (3 downto 0);
blank : in std_logic_vector;
segments_out : out std_logic_vector (6 downto

end entity BCDdecoder;

architecture my_arch of BCDdecoder is

signal inner_segs : std_logic_vector
begin --Internal, auziliar signal

with BCD_in select

inner_segs <= "1111110" when "0000",
"0110000" when "O00O01",
"1101101" when "O0O10",
"1111001" when "OO11",
"1111111" when "1000",
"1110011" when "1001",
Docoooss " when others;

segments_out <= "0000000" when blank

inner_segs;

end architecture my_arch;

(6 downto 0);

= 21’ else

0));

