# Digital Systems - 0

Pere Palà - Alexis López

iTIC http://itic.cat

February 2016

#### Introduction

- ▶ VHDL: VHSIC Hardware Description Language
  - ▶ VHSIC: Very High Speed Integrated Circuit
- ► IEEE Standard (Institute of Electrical and Electronic Engineers)
- ► VHDL-87, **VHDL-93**, VHDL-2002

## std\_logic\_1164

Standardized package : std\_logic\_1164

This is used in almost any VHDL file

```
library ieee;
use ieee.std_logic_1164.all;
```

## Example: AND gate

```
library ieee;
use ieee.std_logic_1164.all;
entity and_gate is
   port( a, b : in std_logic;
        y : out std_logic);
end and_gate;

architecture logic_and of and_gate is
begin
   y <= a and b;
end;</pre>
```

- entity: connections to the outside world
- architecture: what it does

#### **Identifiers**

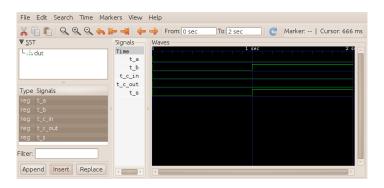
- Case insensitive: AND is the same as aNd
- Reserverd words
  - entity, or, and, register, begin, ... The editor usually highlights them!
- ▶ **Only** alphabetic letters ('Aa' to 'Zz'), decimal digits ('0' to '9') and the underscore character ('\_')
- ▶ Must start with an alphabetic letter
- May not end with an underscore character
- ▶ May not include **two** successive underscore characters

### Example: Full Adder

```
library ieee;
use ieee.std_logic_1164.all;
entity full_adder is
   port( a, b, c_in : in std_logic;
         s, c_out : out std_logic);
end full_adder;
architecture arch_1 of full_adder is
   signal temp : std_logic;
begin
   temp <= a xor b;
   s <= temp xor c_in;
   c_out <= (a and b) or (c_in and temp);</pre>
end;
```

All assignments are concurrent! This is exactly the same:

```
s <= temp xor c_in;
c_out <= (a and b) or (c_in and temp);
temp <= a xor b;</pre>
```


## **Testing**

```
library ieee;
use ieee.std_logic_1164.all;
entity full_adder_tb is
end full_adder_tb;
architecture behav of
             full adder tb is
 component my_adder
 port(a,
       b.
       c_in : in std_logic;
      s,
       c_out: out std_logic);
   end component;
   for dut : my_adder use
      entity work.full_adder;
signal t_a,t_b,t_c_in,
       t_s,t_c_out:std_logic;
```

```
begin
dut : my_adder port map
       (a \Rightarrow ta.
        b => t_b
        c_{in} => t_{c_{in}}
        s => t s.
        c_out => t_c_out);
process
  begin
  t_a <= '0';
  t b <= '0':
 t_c_in <= '0';
  wait for 1 sec;
t a <= '0':
  t_b <= '1';
  t_c_in <= '0';
  wait for 1 sec:
  wait;
end process;
end behav ;
```

### Testing/2

- \$ ghdl -a full\_adder.vhd
- \$ ghdl -a full\_adder\_tb.vhd
- \$ ghdl -e full\_adder\_tb
- \$ ghdl -r full\_adder\_tb --vcd=full\_adder\_tb.vcd
- \$ gtkwave full\_adder\_tb.vcd &

