Digital Systems - Mini AVR 5

Pere Pala - Alexis Lépez
iTIC http://itic.cat

May 2016

Adding some RAM

» Up to now, we only had space for 16 registers (r16 to r31)
» Insufficient for some applications

» We will add 1 kByte of RAM

» 1024 x 8 bit

» Requires 10 address bits
» Problem: OpCode Design?

> 6 bits left to indicate operation

> If we had 32 kByte of RAM?

» 1 bit left for OpCode!!

Two-cycle instructions

First Solution
Two-cycle instruction
Example : LDS Rd,k
32-bit Opcode:
1001 000d dddd 0000
kkkk kkkk kkkk kkkk

v

v

vV vy VvVvyy

v

Requires 2 cycles

We need a state machine to keep track of the status and act
accordingly.

v

v

Allows a direct access of 64 K positions

Indirect Addressing

v

Second Solution

v

Use the concatenation of two 8-bit registers
> X <= R27 & R26

v

Example : b Rrd,x

> Load the destination register with the content of the memory
position formed by the concatenation of r27 and r26.

v

Example : sT x,Rr

> X <= R27 & R26
» Store the value of the source register into the memory position
formed by the concatenation of r27 and r26.

Allows 16-bit Opcodes
Single cycle

v

v

v

Need to prepare X with the appropriate value

Documentation of AVR instructions : LD

» LD — Load Indirect from Data Space to Register using Index X

» Description:

» Loads one byte indirect from the data space to a register. The
data location is pointed to by the X (16 bits) Pointer Register
in the Register File.

» Rd + (X)

» Syntax: LD Rd, X

» Operands: 0 < d < 31

» Program Counter: PC <+ PC + 1
» 16-bit Opcode: 1001 0004 dddd 1100

» Status Register (SREG) and Boolean Formula:
ITHSVNZC

Documentation of AVR instructions : ST

» ST — Store Indirect From Register to Data Space using Index
X
» Description:
» Stores one byte indirect from a register to data space. The

data location is pointed to by the X (16 bits) Pointer Register
in the Register File.

» (X) < Rr

» Syntax: ST X, Rr

» Operands: 0 < r < 31

» Program Counter: PC «+ PC + 1
» 16-bit Opcode: 1001 001r rrrr 1100

» Status Register (SREG) and Boolean Formula:
ITHSVNZC

Overall System View

RAM: ,?
8 ram_q
Control: clit,
ROM: | 46
f 16
pr_op mem_adr
L » X
3 — —
f alu_in_a aly_in_b
pr_pc alu_o
- _Op |ALU:
T8 pr_SR kimp
(ZC) 12
I: L;' alu_out ? |
T
L clk
81 2$ nx_SR
nx_pc ok (Z,C)
% port_we
8 Kk jm
E f Jmp port_adr 4 ﬁ—]
) _
o
asynchronous synchronous outputs
inputs inputs

Detailed View of RAM portion

reg_we RogW- 6 ram_we RANE /8
nx_reg 8 ram_q
T
Control:—= out_mux _<|k—>

- 8 « f 14 16

pr_op d_reg 4 mem_adr
r_reg (L X

alu_out

Sample Code

NOP
LDI
LDI
LDI
LDI
ST
LD
RJMP

r26,x05
r27 ,x00
ri6,x01
r18 , xFF
X,r16
ri7,X
-1

s

s

s

x=0005;

do something

HALT

VHDL implementation. RAM

constant RAM_size : integer := 2 *x 10 - 1; -- 1 kByte RAM
type RAM_block is array (0 to RAM_size) of
std_logic_vector (7 downto 0);
signal RAM : RAM_block;
signal ram_q : std_logic_vector(7 downto 0);
signal mem_adr : std_logic_vector (15 downto 0);

VHDL implementation. RAM with Synchronous Read and
Write

» Option 1 (read before write):

RAM_process : process (clk)
begin
if rising_edge (clk) then
if mem_we =’1’ then
RAM(to_integer (unsigned (mem_adr (9 downto 0)))) <=
regs(to_integer (unsigned(r_reg)));
end if;
ram_q <= RAM(to_integer (unsigned(mem_adr (9 downto 0))));
end if;
end process;

Signals

: a0 us
Time 1004 us

cl7[7:0] =

reset =|

debug_ram 5[7:0] =
ram g[7:0] =

VHDL implementation. Ram with Synchronous Write and
“Combinational” Read

» Option 2 (write before read):

RAM_process : process(clk)
begin
if rising_edge(clk) then
if mem_we =’1’ then
RAM(to_integer (unsigned (mem_adr (9 downto 0)))) <=
regs (to_integer (unsigned(r_reg)));
end if;
end if;
end process;

ram_q <= RAM(to_integer (unsigned(mem_adr (9 downto 0))));

Signals
Time 100 us
clk=
pr op[l5:0] =
r16[7:0] =
£17[7:0] =

reset =
debug_ram S5[7:0] =
ram_c[7:0] =

VHDL implementation. Ram with Synchronous Write and
Combinational Read. Synthesizes good
» Option 3: (write before read with registered address)

RAM_process : process(clk)
begin
if rising_edge (clk) then
if mem_we =1’ then
RAM(to_integer (unsigned (mem_adr (9 downto 0)))) <=
regs (to_integer (unsigned(r_reg)));
end if;
mem_read_adr <= mem_adr;
end if;
end process;
ram_q <= RAM(to_integer (unsigned(mem_read_adr (9 downto 0))));

Signals
Time 100 us

rle[7:0] =
cl7[7:0] =

reset =

debug_ram 5[7:0] =
ram_g[7:0] =

On the importance of coding style and available features

» Option 1: Read before write
> Not desirable!

» Why this behavior?
» VHDL code for:

process (clk)

begin
if rising_edge(clk) then
Q1 <= D;
Q2 <= Q1;
end if;

end process;

» Which is exactly the style in Option 1

» Option 2:

» Compilation time : > 5 min

» Option 3:

- Total logic elements

Total combinational functions
Dedicated logic registers

Total registers

Total pins

Total virtual pins

Total memeory bits

Embedded Multiplier 9-bit elements

Total PLLs

» Compilation time : < 1 min

=I- Total logic elements

Total combinational functions
Dedicated logic registers

Total registers

Total pins

Total virtual pins

Total memory bits

Embedded Multiplier 9-bit elements

Total PLLs

On the importance of coding style and available features

10,717 / 22,320 (48 %)
6,629/22,320 (30 %)
8,236/22,320(37 %)
8236

9/154 (6%)

0

0/608,256 (0%)
0/132(0%)
1/4(25%)

124/22,320(<1%)
124 /22,320 (<1%)
53/22,320(<1%)
53

9/154 (6%)

0

8,192 / 608,256 (1%)
0/132(0%)
1/4(25%)

