
Aquesta obra està subjecta a una llicència Attribution-NonCommercial-ShareAlike 3.0 Spain de Creative Commons. Per veure’n una còpia, visiteu
http: // creativecommons. org/ licenses/ by-nc-sa/ 3. 0/ es o envieu una carta a Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

UNIVERSITAT POLITÈCNICA DE CATALUNYA
BARCELONATECH
Enginyeria de Sistemes TIC

Pseudorandom Noise Generator
Processament Digital del senyal — Enginyeria de Sistemes TIC

Jordi Bonet-Dalmau

October 13, 2023

Contents

1 Objective 1

2 Using the sound card from Octave 1

3 Noise with normally distributed values 2

4 Noise with binary values 3

5 Noise with binary values using LFSR 3

6 Spectrum of the noise 4

7 Advanced activity 4

1 Objective

In many areas, where producing an unpredictable result is desirable, random sequences are used.
Among these areas there is computer simulation: e.g. simulate a system to know its performance
in the presence of noise. But it is not easy to achieve the goal of true randomness. Otherwise, it
is easy to generate sequencies whose properties approximate those of random sequences. These
sequences are called pseudorandom sequences.
In this lab session we will build a pseudorandom sequence generator based on a linear feedback

shift register (LFSR), an structure that you have seen in Introducció als Sistemes Digitals. This
generator could be implemented in many ways. We have chosen to use a computer in which a
program written in a high level language is executed. We can use any language we know like
Python, C or Octave, although we will focus on the later as we have done in Senyals i Sistemes.
The pseudorandom sequence will be send to the sound card of the computer in order to hear how
this generated noise sounds.
Finally, you must realize that a simple binary noise generator can be implemented using a

single digital output of some devices that you know how to control, like a microcontroller or an
FPGA, using only an small part of the resources they have.

Pràctica 1. Processament Digital del senyal 1

http://creativecommons.org/licenses/by-nc-sa/3.0/es

2 Using the sound card from Octave

Before starting to build the pseudorandom noise generator, we will verify that the communications
between Octave and the sound card is good. What follows is a résumé of the information given
in the two first lab sessions of Senyals i Sistemes: Pràctica 1 and Pràctica 2 .
The best way to acces the sound card is executing a command line program of your operating

system called sox. This program can be called as play to play a sound and as rec to record a
sound. You can verify that the packet sox is installed on your system by simply executing on a
terminal man sox. If not installed, execute on the same terminal:

> sudo apt i n s t a l l sox

Tasca 1 If you have succeeded in the previous step, try to record a sound using the function
rec_so.m.

f unct ion x=rec_so (N, f s)
i f narg in==1, f s =48e3 , e l s e i f (narg in !=2) , p r i n t_u sage () , end
f i l e =[tempname () , ’ . wav ’] ;
t f=N/ f s ;
i nput (’ P l e a s e ␣ h i t ␣ENTER␣and␣ speak ␣ a f t e rwa r d s !\ n ’ , 1) ;
system ([’ r e c ␣−c1␣−r ␣ ’ , num2str (f s) , ’ ␣ ’ , f i l e , ’ ␣ t r im ␣0␣ ’ , num2str (t f)])
[x , f s]= aud i o r e ad (f i l e) ;
system ([’ rm␣ ’ , f i l e]) ;

end

You can save this function in a folder where you will open octave or you can add the path
using addpath from octave.

> addpath ("/home/ u s e r / whe r e_ func t i on_ i s ")

Choose the sampling frequency Fs and the duration of the recorded sound tf , and determine
the number of samples N .

> f s =??; t f =??;N=f (t f , f s) ; x=rec_so (N, f s) ;

You can plot the vector of samples x to verify the amplitude of the sound you have recorded. Be
carefull not to saturate the microphone (maximum abolute value is 1).

Tasca 2 Now play the recorded sound using the function play_so.m.
f unct ion p lay_so (x , f s)

i f narg in==1, f s =48e3 , e l s e i f (narg in !=2) , p r i n t_u sage () , end
f i l e =[tempname () , ’ . wav ’] ;
a u d i ow r i t e (f i l e , x , f s) ;
system ([’ p l a y ␣ ’ , f i l e]) ;
system ([’ rm␣ ’ , f i l e]) ;

end

> play_so (x , f s)

What is the length of the played sound if you use a sampling frequency Fs different that the one
you have used to record the sound?

3 Noise with normally distributed values

First we will use the randn.m function from Octave. This function gives normally distributed
pseudorandom values with zero mean and variance one.

2 Pràctica 1. Processament Digital del senyal

http://ocwitic.epsem.upc.edu/assignatures/ss/practiques/practica-1/view
http://ocwitic.epsem.upc.edu/assignatures/ss/practiques/practica-2/view
http://ocwitic.epsem.upc.edu/assignatures/pds/recursos/rec_so.m/view
http://ocwitic.epsem.upc.edu/assignatures/pds/recursos/play_so.m/view

Tasca 3 Play with randn.m to know what a normally distribution is.
> N=1e5
> x1=randn (N, 1) ;max(x1) ,min (x1) ,mean(x1) , va r (x1) ,
> f i g u r e (1) , p lo t (x1)
> n=[−5 : . 1 : 5] ; h=h i s t (x1 , n) ; f i g u r e (2) , p lo t (n , h)

Send the samples to the sound car at different sampling frequencies and verify that it is like noise.
> play_so (x1 , f s)

You can repeat with rand.m which gives uniformly distributed values on the interval (0,1).

4 Noise with binary values

Now we will try to make noise with binary values. As it has been said before, this kind of noise is
easily generated using a single digital output. To achieve randomness we will convert the previous
positive random values to one binary value v0 and the negative to the other binary value v1. To
use all the dynamic range of the sound card these values could be v0 = −1 and v1 = 1.

Tasca 4 From the previous computed normally distributed pseudorandom values x1 compute
a new set of binary pseudorandom values x2. Instead of using a loop to verify the sign of each
element of x1 use logical indexing. Here is an example of logical indexing.

> x1=randn (1 , 5)
x1 = −1.277148 −1.068257 0.236539 0.076126 −0.722842
> x2=x1 ;
> x2>=0
ans = 0 0 1 1 0
> x2<0
ans = 1 1 0 0 1
> x2 (x2>=0)=1
x2 = −1.27715 −1.06826 1.00000 1.00000 −0.72284
> x2 (x2<0)=−1
x2 = −1 −1 1 1 −1

Send the samples to the sound car and compare the results when using x1 and x2

> play_so (x1 , f s) , pause (1) , p lay_so (x2 , f s)

5 Noise with binary values using LFSR

Now we will make noise avoiding the function randn.m of Octave. The idea is to use an algorithm
that can be easily implemented. We will use a linear feedback shift register (LFSR), an structure
that was introduced at the beginning of this degree.

Tasca 5 Use one of the polynomials that appear on the following link, LFSR, to compute a new
set of binary pseudorandom values x3. Here are some of the steps you will need to do. First you
have to initialize the shift register sr with a seed. I suggest using all ones. Next you have to start
an iterative process (each iteration is equivalent to a rising clock). In this iteration you have to
compute the value in, computed from some values of the shift register, that is at the input of the
first shift register. You have to store in at each iteration in order to obtain the pseudorandom
sequence. Finally, don’t forget to convert the values of this sequence {0, 1} to the dynamic range
of the sound card {1,−1}
Here is an example of some lines of the code using a polynomial of degree n = 10 to compute

N values.

Pràctica 1. Processament Digital del senyal 3

http://en.wikipedia.org/wiki/Linear_feedback_shift_register

s r=ones (n , 1) ;
x3=zeros (N, 1) ;
f o r i =1:N

i n=xor (s r (10) , s r (7)) ;
. . .

end
. . .
p lay_so (x3 , f s)

Compare the results of hearing x1, x2 and x3 for different degrees n. Do you like the result for
n = 10? and for n = 16?

You can compare the results with some online white noise generators like onlinetonegenerator or
simplynoise.

6 Spectrum of the noise

Now you can compare the spectrum of each one of the generated noise sequences x1, x2 and x3
using the function f_TF.m.

Tasca 6 Play each one of the noises at different Fs and observe its spectrum. Try to relate
the spectrum at different Fs with how the noise sounds. The human ear sensitivity range is
commonly given as 20 Hz to 20 kHz, though there is considerable variation between individuals,
especially at high frequencies. In addition, earphones, and speakers in general, don’t cover well
frequencies above 10 kHz.

[X3 , F]=f_TF(x3 , f s) ;
f i g u r e (3) , p lo t (F , abs (X3))

7 Advanced activity

During the reproduction of the previous signals some problems related to the sound card may
arise. Sound cards can work with only one or a few sampling frequencies. The sound card can
deal with other sampling frequencies but at the cost of processing using sample rate-conversion al-
gorithms. Depending on the sound card possibilities, recording with some non standard sampling
frequencies can give wrong samples. If you experience problems try to always use an standard
frequency like 44 100 Hz.
Another issue is the digital to analog converter of the sound card. It will be interesting to

compare the analog signal at the output of different sound cards when a periodic pattern (easy
to see on an oscilloscope) is send to them.

Tasca 7 First generate an N−length sequence x3 with a periodic pattern made of one −1 and
two 1. We assume that the sampling frequency of these samples is Fm3. Then generate another
sequence x4 from x3 which is made repeating each value of x3 nr times (try to avoid the use of
a loop of length N). As a consequence, the length of x4 is nr times that of x3. We assume that
the sampling frequency of these samples is Fm4 = Fm3 × nr. An example is showed in Figure 1.

Connect an appropiate cable to the output of the sound card and the input of the oscilloscope
(jack on the computer side and pins on the oscilloscope side). Finally play these sequences and
visualize them on the oscilloscope.

> play_so (x3 , f s 3) , pause (1) , p lay_so (x4 , f s 4)

Try different patterns and sampling frequencies.

4 Pràctica 1. Processament Digital del senyal

http://onlinetonegenerator.com/noise.html
http://simplynoise.com
http://ocwitic.epsem.upc.edu/assignatures/pds/recursos/f_TF.m/view

0 0.2 0.4 0.6 0.8 1

x 10
−3

−1

−0.5

0

0.5

1

t

x
3

x
4

Figure 1: Samples of x3 and x4 during 1 ms. Pattern [-1 1 1], Fm3 = 12 kHz, nr = 4

Pràctica 1. Processament Digital del senyal 5

	Objective
	Using the sound card from Octave
	Noise with normally distributed values
	Noise with binary values
	Noise with binary values using LFSR
	Spectrum of the noise
	Advanced activity

