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1 Subsampling a sinusoidal signal

Problem 1.1 Consider sampling the sinusoidal signal of the figure with an ideal (i.e no quan-
tization error) ADC. The samples are send to an ideal (i.e. ideal interpolator) DAC. How the
obtained signal at the output of the DAC will be seen in an oscilloscope? Let the sampling
rate be Fs = 10 kHz. Repeat for Fs = 20 kHz.
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Problem 1.2 Consider sampling a sinusoidal signal with an ideal ADC followed by an ideal
DAC. Let the sampling rate be Fs = 7 kHz. The figure shows the obtained signal at the output
of the DAC. How the signal at the input of the ADC will be seen in an oscilloscope? Are you
sure that this is the only possible signal?
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Problem 1.3 Consider the two signals in the figure. The output signal is the result of sampling
the input signal with an ideal ADC followed by an ideal DAC. Determine the sampling rate
Fs that has been used. Sure?
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Problem 1.4 Consider the square signal of the figure. This signal is low-pass filtered by an
ideal filter in order to remove all the harmonics higher than the fundamental frequency. The
low-pass filtered signal is sampled using an ideal ADC followed by an ideal DAC. How the
obtained signal at the output of the DAC will be seen in an oscilloscope? Let the sampling
rate be Fs = 10 kHz.

Hint: A square wave with a peak-to-peak amplitude of value App has a first harmonic with
a peak-to-peak amplitude App

4
π .
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Problem 1.5 Consider a square signal low-pass filtered as before. The low-pass filtered signal
is sampled using an ideal ADC followed by an ideal DAC. Let the sampling rate be Fs = 10 kHz.
The figure shows the obtained signal at the output of the DAC. How the square signal will be
seen in an oscilloscope? Are you sure that this is the only possible signal?
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Problem 1.6 Consider the two signals in the figure. The output signal is the result of sampling
the, previously low-pass filtered as before, input signal with an ideal ADC followed by an ideal
DAC. Determine the sampling rate Fs that has been used. Sure?

Hint: cos(2πFat) = cos(2π(−Fa)t).
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2 Subsampling a periodic signal

Non-sinusoidal periodic waveforms are an important class of signals with some prominent
examples as the square and sawtooth waveform. The Fourier series method of analysis first
resolves a periodic input into the sum of a dc component and infinitely ac components at
harmonically related frequencies.

For instance, a rectangular signal like the one in the figure

can be resolved into the following sum: xsq(t) = αA+ 2A
π

∞∑
n=1

sin(nαπ)
n cos(nω0t).

The square signal is a particular case of the rectangular signal when α = 0.5 (i.e a duty cycle
of 50%) and the previous equation may be written as:

xsq(t) = A
2 +2A

π

∞∑
n=0

(−1)n
2n+1 cos((2n+1)ω0t) = A

2 +2A
π

(
cos(ω0t)− 1

3 cos(3ωot) + 1
5 cos(5ωot)− . . .

)
.

Another example is the sawtooth signal of the figure

that can be resolved into the following sum: xsaw(t) = A
2 −

A
π

∞∑
n=1

1
n sin(nωot).

A final example is the triangular of the figure

that can be resolved into the following sum:

xtri(t) = A
2 +4A

π2

∞∑
n=0

1
(2n+1)2

cos((2n+1)ωot) = A
2 +4A

π2

(
cos(ω0t) + 1

9 cos(3ωot) + 1
25 cos(5ωot) + . . .

)
.

An important difference between the last and the previous waveforms is the way harmonics
decrease with frequency. While square and sawtooth components have an amplitude inversely
proportional to the frequency (i.e. amplitude at frequency nω0 ∝ 1

n), triangular components
have an amplitude inversely proportional to the square of the frequency (i.e. amplitude at
frequency nω0 ∝ 1

n2 ). This means that a triangular waveform has the spectrum more con-
centrated at low frequencies. Consequently, a low-pass filter will have much more effect on a
square than on a triangular waveform.
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Problem 2.1 Consider the square signal of the figure with a 50% duty cycle, i.e. α = 0.5. This
signal is sampled at Fs = 20 MHz using an ideal ADC followed by an ideal DAC. Determine
the obtained signal at the output of the DAC as a sum of sinusoidal signals. Draw its positive
spectrum made of Dirac deltas at the right frequency and with the right amplitude. Number
each delta with a number n corresponding to the nth-harmonic of the square signal at frequency
n times the fundamental. Limit your results up to the 9th-harmonic.
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Problem 2.2 Repeat the previous problem considering now a rectangular signal with a 25%
duty cycle, i.e. α = 0.25.
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Problem 2.3 Repeat the previous problem (a rectangular signal with a 25% duty cycle, i.e.
α = 0.25) now with a frequency F0 = 95.111 MHz. Let the sampling rate be Fs = 80 MHz.
Limit your results up to the 6th-harmonic.
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3 Signal to noise ratio (SNR)

As you know a real ADC quantizes the samples of a signal with a finite number of bits b. As a
consequence it introduces an error with such properties that it can be viewed as a certain type
of noise. The quantization noise of a signal sampled by an ADC with b bits and a dynamic
range Dr can be approximated by Nq = D2

r/(12 · 22b). The approximation assumes that the
sampled signal is a line between two quantized values (which is a reasonable assumption, for
any signal, if b is high enough). For a sinusoidal signal of peak amplitude A, the power is

S = A2/2. So, the SNR= S/Nq = 6A2

D2
r

22b. When the signal uses all the dynamic range, i.e.

the peak to peak amplitude equals the dynamic range 2A = Dr, the SNR has its maximum
value: SNR= S/Nq = 1.5 · 22b or SNR|dB= 10 log10(S/Nq) = 10 log10(1.5) + 10 log10(2

2b) =
10 log10(1.5) + 20 log10(2)b that can be approximately written as SNR|dB' 1.76 + 6.02b.

Problem 3.1 Consider an ADC of b = 8 bits an dynamic range of Dr = 5 V. Compute the
SNR after the discretization and quantification of a sinusoidal signal. Let the peak amplitude
be A = 1.25 V. Compare this result with the one obtained when the input signal uses all the
dynamic range of the converter, i.e. A = 2.5 V.

Problem 3.2 Consider an ADC with a dynamic range of Dr = 5 V that discretizes and
quantifies a sinusoidal signal with peak amplitude A. Let the peak amplitude be A0 = 2.5 V,
A1 = 1.25 V and A2 = 0.625 V. For each amplitude, how should b be chosen so that the
SNR> 49 dB.
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4 Total harmonic distortion (THD)

In the real world there are no ideal devices. In particular there are no linear devices. The
nonlinearity of same devices is characterized putting a pure sinusoidal signal at the input. A
linear device will have a pure sinusoidal signal at the fundamental frequency at the output. A
nonlinear device will have harmonics (if you are interested ask for an explanation) at multiples
of the fundamental frequency at the output. The nonlinearity is evaluated as the ratio of the
power of the signal at the fundamental frequency to the power of all other harmonics (excluding
the dc component). This relation is called Total Harmonic Distortion (THD). We can express
this relation as THD= S/D, being S the power of the signal at the fundamental frequency
and D the power of all other harmonics. Alternatively we can express this ration in dB as
THDdB = 10 log10(S/D).

Harmonic distortion is also observed in ADC, with the particularity that once the sinusoidal
signal is sampled the relations between the harmonics could not be the expected because of
the subsampling phenomenon previously worked, e.g. in Problem 2.2 or Problem 2.3.

Problem 4.1 Consider a sinusoidal signal of frequency F0 = 1 kHz at the input of a nonlinear
ADC. The obtained spectrum frequency (via Fourier Transform) at the output of the ADC is
the one showed below. Compute the THD in dB.

Hint: don’t forget the part of the spectrum with negative frequencies, i.e the sinusoidal
signal at frequency 1 kHz has two deltas and its power is computed from both.
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Problem 4.2 Consider a sinusoidal signal of frequency F0 = 5 kHz at the input of a nonlinear
ADC. The obtained spectrum at the output of the ADC is the one showed below. Note that,
as the sampling frequency is Fs = 18 kHz, subsampling phenomenon is observed. Compute the
THD in dB.
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Problem 4.3 Consider a sinusoidal signal of frequency F0 = 5 kHz at the input of a nonlinear
ADC. The obtained spectrum in dB with respect to the fundamental at the output of the ADC
is the one showed below. Note that, as the sampling frequency is Fs = 18 kHz, subsampling
phenomenon is observed. Compute the THD in dB.
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Problem 4.4 Consider that the spectrum computed in Problem 2.2 is the result of sampling
a pure sinusoidal signal and not a rectangular signal. This way, you should consider that the
harmonics comes from distortion of the ADC. Compute the THD in dB.

Problem 4.5 Consider that the spectrum computed in Problem 2.3 is the result of sampling
a pure sinusoidal signal and not a rectangular signal. This way, you should consider that the
harmonics comes from distortion of the ADC. Compute the THD in dB.
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5 Signal to noise and distortion ratio (SINAD)

In previous sections we have seen that an ADC adds noise and distortion to the sampled signal.
The first is because of the quantization process and the second because of the nonlinearities
of the ADC. We have characterized the effect of noise as the ratio of the signal power to the
noise power (SNR) and the effect of distortion the ratio of the signal power to the distortion
power (THD).

Now we will consider the effect of noise and distortion simultaneously as the ratio of the signal
power to the noise plus distortion power, called signal to noise and distortion ratio (SINAD).
We can express this relation as SINAD= S/(N + D), being S the power of the signal at the
fundamental frequency, N the power of the quantization noise and D the power of all other
harmonics. Alternatively we can express this ration in dB as SINADdB = 10 log10(S/(N+D)).

Problem 5.1 Compute the SINAD in dB of the Problem 4.2 considering that the number
of bits used to code the samples is b = 4 and the Dr the necessary to fit the input signal.
How is the noise compared to the distortion? Do we have any improvement when increasing
the number of bits to b = 5? Compare the values of SNR, THD and SINAD and give some
conclusions.

Problem 5.2 Compute the SINAD in dB of the Problem 4.3 considering that the number
of bits used to code the samples is b = 4 and the Dr the necessary to fit the input signal.
How is the noise compared to the distortion? Do we have any improvement when increasing
the number of bits to b = 5? Compare the values of SNR, THD and SINAD and give some
conclusions.
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6 Effective Number of Bits (ENOB)

On Section 3 we have obtained the following relation: SNR|dB' 1.76 + 6.02b. If in addition
to noise we want to take into account the distortion, and see it as another source of noise, we
define and effective number of bits (ENOB) as the number of bits that will give and SNR equal
to the SINAD: SINAD|dB' 1.76 + 6.02ENOB. Once the value of SINAD is known the ENOB
can be computed from the previous equation. Note that ENOB will always be lower that the
number of bits b. ENOB is a simple way to summarize the overall performance of an ADC.

Problem 6.1 Compute the ENOB of Problem 5.2.
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7 The ideal interpolator

If you are interested in knowing more about the ideal band-limited interpolator ask your
teacher.
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8 ADC vs Downconverters

Read pages 10 and 11 of the following article October 2014 Edition of EE Times Europe. Below
you will find these two pages.

Problem 8.1 Summarize the article and relate it to the Digital Signal Processing course you
are following.
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https://www.eenewseurope.com/archives/pdf-eete-oct-2014.pdf
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