Systems Integration

Software and Information Technology Systems

Pere Pala

iTIC http://itic.cat

v1.0 October 2013

Source: A significant part is from Mark W. Maier and Eberhardt Rechtin's The Art of Systems Engineering 3rd Ed


http://itic.cat

Introduction: The Status of Software Architecting
Introduction
» Software is becoming the centerpiece of complex system
design
» Developers of products are developing software
» Why?

> Ability to create intelligent behavior
» Ability to accomodate changing trends (technical, economical)

» Other fields may be more stable (physical architecture of
aircraft, spacecraft, cars)

Anecdotal Evidences

» From 70% Hard 30% Soft to 30% Hard 70% Soft

» Complete Systems-on-a-Chip (SOC). The differentiation
comes through Software

» From hardware designer to hardware integrator and software
developer



Information Technology

> Integration of computers and communications

» Trend: IT practice is not developing applications but
integrating preexisting applications

» Well-architected software can evolve

» Evolution of software is more rapid than evolution of hardware
(cost). Regular full replacement is feasible

» Software is flexible

» Good medium to implement system intelligence
» General purpose hardware

» Economies of scale: hardware is cheap
> General purpose software

» Operating systems, web applications

» Open-source and reusable code

» Software architecture is important!



Software Architecture and Trends

Software Architecture

» Structure of a software system: components and interfaces

» Plus: behavior, constraints and applications

Trends

» Software: from support role to centerpiece

» Hardware selection: depending on the ability to support
software (and not the converse!). AVR vs PIC

» BUT: The system (and not the software) is THE end product.
Client acquires the system, not the software!



Software as a System Component

v

System architecture and software architecture

v

Software provides abstractions for creating system behavior
(software layers)

v

Software allows evolutionary delivery

v

Software must be integrated into a hardware system

There seems to be no successor to software as a tool to
implement behaviorally complex systems

v



Software for Modern Systems

Characteristics of modern systems

>

Storage of large volumes of information and its
semiautonomous and intelligent interpretation

Responsive human interfaces. Mask the underlying machine.
Operate in metaphor

Semiautonomous adaptation to the behavior of the
environment and individual users

Real-time control of hardware (faster than human) with
complex functionality

Constructed from mass-produced computing components and
unique software (customizable)

System coevolutions with customer. Experience changes
perceptions of what is possible



Software for Modern Systems /2

» High-level languages plus general-purpose computers —
complex, evolutionary systems at reasonable cost

> Achieving the same with hardware is orders of magnitude
more expensive. Evolution is more difficult.

» Software layers allow more behavioral complexity

» Trend: machine language, assembler, general-purpose (C,
Ada...), domain-specific (MATLAB, SQL...)

» Language models become closer to application

» Computational abstractions



Systems, Software and Process Models

» Challenge: integration needs of hardware and software
» Hardware is best developed with few iterations
» Software can and should evolve through iterations

» Hardware: well-planned design and production cycle.
Large-scale production deferred to the final delivery

» Software: requires access to the targeted hardware platform

» Software distribution costs are low. Except if certification is
required

» Hardware changes?



Waterfalls for Software?

» Hardware: process chosen is usually waterfall. Iterations are
local to each phase

» Software can use a waterfall model: design, coding, test and
delivery

» Spiral model is the usual choice. All successful software
systems are iteratively developed and delivered

» Spiral may help fixing problems discovered in the field

» Waterfall tries to avoid them with good requirements.

» Communication protocols may be not precise enough, not fully

implemented
» Therac 25



Spirals for Hardware?

» Spiral for hardware means frequent prototyping

» For systems which are one-of-a-kind, a prototype is a full
system!

» Prototype parts of the system
» Build scale models
» For mass-produced systems prototype cost may be reasonable

» Have to be built on production lines similar to the final one.
Also expensive



Integration: Spirals and Circles

Breadboard
Prototype

Production

Relyuirements

y Degign

Integrate / et
Bulilll

7




[terations

v

Stable hardware forms should appear early

v

Software iteration: aiming at release 1.0 for production
hardware

v

Hardware-software codesign: make physical prototypes
unnecessary. A log way to go!

v

Software: Do the hard parts first



Hierarchy

» Systems can be viewed in hierarchies
» System composed of subsystems composed of small units
» A system may be embedded in higher-level systems becoming
a component
» Decomposition in design, integration in reverse

» This view may not match software development

» Object-oriented abstractions
» Layers
» Infrastructure objects (databases, operating systems)



Objects

Collection of functions and data

v

v

Objects run concurrently with other objects

» May run on different machines

v

Number of objects may be unknown. Determined at runtime

v

May work in a network, in arbitrary numbers, depending on
events



Layers

Are a form of hierarchy
But lower-level elements do not appear at the higher level!

Within a layer, objects are peers: not contained one in another

Middleware layer: objects

Some middleware services provided by OS. Other by external
software units

Software hierarchy becomes disconnected of hardware
hierarchy. (This is THE objective)



Infrastructure Objects

> Large objects: operating systems and databases
» Millions of lines of code. Rich functionality

» Architect has to adapt to these components (or develop his
own??)



Hierarchies Reconciled

» Software is biggest part of cost — Adopt software view. Not
necessarily!

» Much software is not object-oriented but procedurally
structured

> Hierarchical view and layered view are alternate views —not
exclusive

» Each partitioning has advantages and disadvantages

» Autonomous pieces are (sometimes) attractive: Have their own
software, may be independently developed...



The Role of the Architect

» Architect is the user's advocate

» Responsible for what-it-does and how-it-does. With a limit:
up to the system concept.

» Look at the software and the underlying hardware as an
integrated whole that delivers value to the user

» Make the system evolvable by paying attention to the
interfaces



Programming languages

» Languages influence, guide and restrict our thoughts

» Some problems decompose easily in one language and with
difficulty in others

» Each language encapsulates lower-level languages
» Statements in C, statements in Octave, SQL statements...

» Programmers deliver the same number of lines of code per
day, regardless of the language they are writing in

> Use languages that require few lines of code



Architectures

» Architecture: Macintosh's desktop

» Defines type of information, much of the processing
» Operation is human-centered
» Software is built around a main event loop

> Metaphor of desktop: its elements should behave as real
elements on a desktop



Heuristics

» Choose components so that each can be implemented
independently of the internal implementations of all others

» Programmer productivity in lines of code per day is largely
independent of language

» The number of defects remaining undiscovered after a test is
proportional to the number of defects found in the test. The
constant of proportionality is rarely less than 0.5

» Low delivered defect rate can be only achieved by low defect
insertion rate and by layered defect discovery

» Software should be grown or evolved, not built

» The cost of removing a defect rises exponentially with the
number of development phases since it was inserted

» Do not fix bugs later; fix them now

» Personnel skill dominates all other factors in productivity and
quality



