
Systems Integration
Design Progression

Pere Palà

iTIC http://itic.cat

v1.0 December 2013

Source: A significant part is from Mark W. Maier and Eberhardt Rechtin’s The Art of Systems Engineering 3rd Ed

http://itic.cat


Introduction

Process of architecting

I Systems are diverse. No dogmatic approach

I Concepts ofr architecting activities

I Design process is eclectic. Organization possible

I Key concept: Refinement

I System models: from objective to implementation

I Difference with conventional engineering: parallel
development of problem and solution

I Problem is not assumed to be fixed



Design Progression

I Common pattern: progressive refinement
I Way to organize the transition

I From ill-structured, chaotic and heuristic process at the
beginning

I To rigorous engineering and certification needed later

I Can be thought of a stepwise reduction of abstraction

I Accompanied by an increase in volume of information about
the system

I Episodes of abstraction reduction with episodes of reflection
and purpose expansion



Introduction by Examples

I Civil architect developing a building
I First drawings: rough floor plants and external renderings
I Construction details come later

I Stepwise refinement in programming
I Controlling routine first
I When high complexity is found: ignore, give a name, become a

subroutine
I Stubbed subroutines

I Both examples show
I Progression of modeling
I Strategy: ordering of decisions

I Both should create distinct alternative designs
I Estimate cost, aesthetic opinion...
I Code size, execution speed, review functionality...



Evaluation Criteria and Heuristic Refinement

I Desirable progression for evaluation: from general to
system-specific to quantitative

I Desirable progression for heuristics: from descriptive and
prescriptive qualitatives to domain-specific quantitatives and
rational metrics
In partitioning, choose the elements so that they are as
independent as possible –that is, elements with low external
complexity and high internal cohesion

I Heuristic that is independent of domain. Guidance is
non-specific. Independence? Complexity?

I Moving to a restricted domain: computer-based systems:
Module fan-in should be maximized. Module fan-out should
not exceed 7± 2



Evaluation Criteria and Heuristic Refinement /2

I Should be further refined into quantitative design quality
metrics
Compute a complexity score summing: 1 point for each line of
code. 2 points for each decision point. 5 points for each
external routine call. 2 points for each write to a module
variable. 10 points for each write to a global variable.

I Other metrics exist. Cyclomatic complexity



Progression in Corporations

I A product. An engineering challenge

I An element of value. A source of profit

I Acquires assumption of permanence. Established corporation
encompassing the system, its ongoing development and its
support



Concurrent Progressions

I Risk management
I Early risk management: heuristic with mix of rational methods
I Prototypes, experiments: risk management mixed with

interpretation of results. Estimates are replaced by information
I After system construction: risk management is post-incident

diagnostics

I Cost estimates
I Early stages: high need for estimate, low information available.

Uncertainties are still unresolved
I As development proceeds: design and plans are more concrete

and costs already have been incurred (no estimates but reality)
I Process of decreasing need and increasing information available

I Reliability
I Customer’s desires known, but performance unknown
I Reliability estimates become known as design progresses to

lower levels
I Known when measured in the field



Architecting is Episodic

I Not a monotonic process



Design Concepts

I Architecting is a mix of rational and heuristic engineering

I Architecting revolves around models. Scoping, synthesis and
certification

I Synthesis: Creative invention

I Uncertainty is inherent in complex system design

I Continuous progression on many fronts

I Architecting is combining science with art



Scoping, Synthesis and Certification

Scoping

I Purpose expansion / contraction

I Behavioral definition / analysis

I Large scale alternative definition

I Client satisfaction and builder feasibility



Scoping, Synthesis and Certification /2

Synthesis

I Problem reformulation

I Creative invention

I Iteration
I Aggregation

I Functional aggregation
I Physical components to subsystems
I Interface definition /analysis
I Collection into decoupled threads

I Partitioning
I Behavioral-functional decomposition
I Physical decomposition
I Performance model construction
I Interface definition /analysis
I Decomposition into threads



Scoping, Synthesis and Certification /3

Certification

I Operational walkthroughs

I Test and evaluation

I Verification

I Formal methods verification

I Failure assessment



Scoping

I Well-scoped system: desirable and feasible

I Participants form mental model of the system

I All the really important mistakes are made the first day

I Defer absolute decisions on scope

I Success is defined by the beholder, not by the architect

I Listen closely to what the customer perceives as his
requirements and have the will and ability to be responsive

I Ask early about how you will evaluate the success of your
efforts

I Moving to a larger purpose widens the range of solutions



Synthesis

I Synthesis is creation

I Often the most striking and innovative solutions come from
realizing that your concept of the problem was wrong

I Database synchronization → buy communications capacity

I Plan to throw one away, you will anyway

I Innovative solutions will require to throw away early attempts

I Aggregation and partitioning

I In partitioning, choose the elements so that they are as
independent as possible –that is, elements with low external
complexity and high internal cohesion

I Group elements that are strongly related to each other;
separate elements that are unrelated

I There are metrics for cohesion and partitioning in software



Certification
I To give assurance to the paying client that the system is fit

for use
I House: visual inspection. Computer system: extensive

inspection, mathematical proofs...
I Certification should not be treated separately from scoping or

design. Must be inherent in the design
I For a system to meet its acceptance criteria to the satisfaction

of all parties, it must be architected, designed and built to do
so –no more and no less

I Define how an acceptance criterion is to be certified at the
same time the criterion is established

I Defect discovery: trace to the source
I Enumerate the defects, analyze them, trace them to the

source, make corrections, keep a record of what happens
afterwards and keep repeating it

I Certification of ultraquality
I The number of defects remaining in a system after a given

level of test is proportional to the number found during that
test



Process Model

Activities

I Orientation
I Scoping / planning

I Core architecting (Aggregation / partitioning)
I Purpose analysis (elicitation)
I Problem structuring (synthesis)
I Solution structuring (synthesis)
I Harmonization (analysis)
I Selection or abstraction (decision making)

I Architecture description

I Supporting analysis



Some Considerations

Orientation

I What sort of system does the sponsor believe will emerge?

I What is the scope of the system? Single-mission? Complex
multi-mission? Collaborative system?

I What is the required technology level? Within
state-of-practice? Beyond?

I What are the hard constraints (date)? Are they hard?

I What resources are available?

I What will be done after architecting is complete?

I Are the purposes, architecting effort and documentation
required consistent with each other?

I What is the motivation of constructing the system?



Some Considerations /2

Purpose Analysis

I Who benefits, who supplies, who pays and who loses?

Problem Structuring

I Problem framing, expansion and contraction heuristics,
use-case analysis and functional decomposition

Solution Structuring

I Products are models of the system. Block diagrams, ...

Harmonization

I Match up problem and solution

I Functional walkthroughs, performance analysis and executable
simulations



Some Considerations /3

Selection or Abstraction

I Make choices. Perhaps drop the whole pursuit!

I Select the desired configuration

I Abstraction. For collaborative systems, select common things

Architecture Description

I It is the result of architecting work

Supporting Study

I Deep investigation of narrow areas. Key for system
performance

I One architecting cycle reveals the areas requiring in-depth
investigation



Decisions

I Decision theory works well in ideal situations: reliable data,
cost function available...

I Elements of decision
I Identifiy attributes contributing to client satisfaction
I Determine a utility function
I Include uncertainty by determining probabilities. Use client’s

risk aversion curve
I Select result with highest expected utility

I Benefit of this framework: decision criteria are explicit and
subject to discussion (with all participants)



Progressing or Stopping?

I Continuous progressing until system goals achieved
I Vague customer purposes: early prototypes, keep options

I Firm commitments are best made after the prototype works
I Hang on to the agony of decision as long as possible

I Untestable performance (ultraquality, hostile environment...)
I Byzantine failure testing



Conclusion

I Help in organizing the architecting process: progression

I From abstract to domain-specific


