Systems Engineering Grounding and Wires

Pere Palà

iTIC http://itic.cat

v1.0 March 2021

Reference Node

• Consider imperfect conductor: 10 m Ω /cm

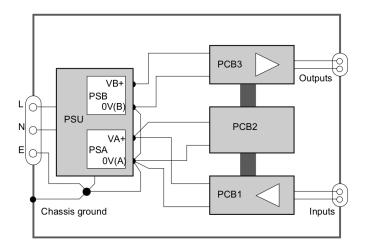
$$0V \text{ rail} \begin{array}{c|c} & & & \\ & & I_1 (20\text{mA}) \end{array} \begin{array}{c} & I_2 (10\text{mA}) \end{array} \begin{array}{c} & I_3 (10\text{mA}) \end{array} \begin{array}{c} \text{power supply} \\ \text{connection} \end{array}$$

Resulting voltages

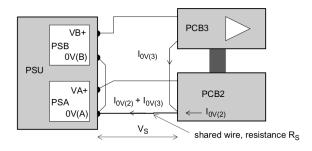
$$V_C = (i_1 + i_2 + i_3)10 \text{ m}\Omega = 400 \,\mu\text{V}$$
$$V_B = 400 \,\mu\text{V} + (i_1 + i_2)10 \,\text{m}\Omega = 700 \,\mu\text{V}$$
$$V_A = 700 \,\mu\text{V} + (i_1)10 \,\text{m}\Omega = 900 \,\mu\text{V}$$

Reference Node

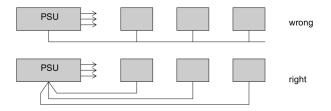
Is this a problem?

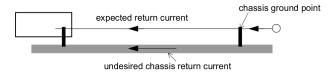

- Amps instead of milli- or microamps
- Resistance in ohms instead of milliohms
- Depending on the SNR!

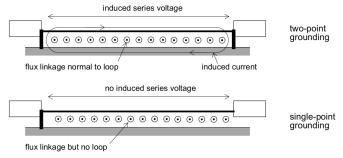
The order of blocks may be important!

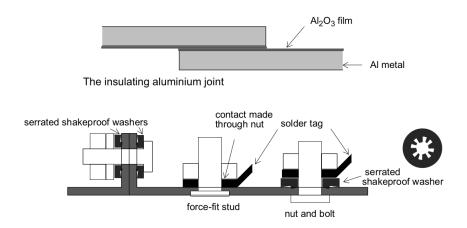

Grounding inside one unit

PCB1 Input signal conditioning

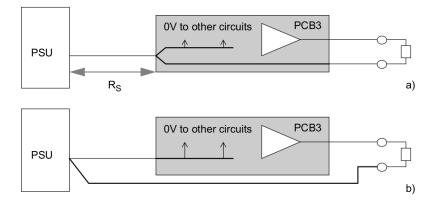

- PCB2 Microcontroller board
- PCB3 High-current output drivers


Power return

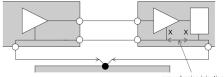

Star vs bus returns


Single-Point Chassis Ground

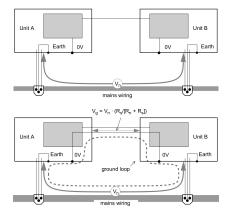
- Impedances depend on frequency
- Joints in chassis affecte by corrosion
- ► Ground loop:



Aluminium and aluminium joints


Output Signal Ground

Avoid common impedances

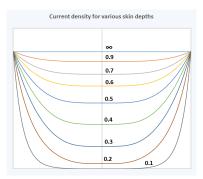

Inter-Board Signals

- ► First possibility: do nothing. Ground returns through PS
- Insert inter-board ground connection
 - High-speed digital communications
 - Precision analogue signals
 - Drawbacks
 - There is alternative path for power return
 - Ground loops
 - Solutions
 - Separate returns
 - Differential connections / optocouplers / 1:1 trafo

ground noise injection here

Ground Between Units

- ► Float (!)
- Differential link
- Galvanic isolation
 - transformer
 - optocouplers
 - fibre optic link


Cables

Туре	Dia (mm)	I Nom	l Melt	R	L	f max (kHz)
AWG 32	0.2	0.33	~ 5	0.54	1.8	430
AWG 26	0.4	1.2	~ 20	0.11	1.7	107

Meaning of maximum frequency?

Skin Effect

- AC current tends to concentrate near the surface of the conductor
- Skin depth δ : equivalent thickness
- Equivalent tubular conductor at DC

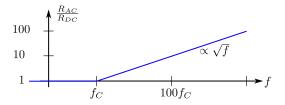
Skin Effect/ 2

$$\delta = \sqrt{\frac{\rho}{\pi\mu f}} = \frac{6.10 \times 10^{-2}}{\sqrt{f[\text{Hz}]}}$$

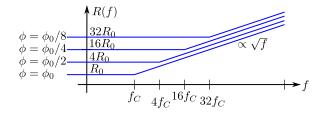
▶ At 10 MHz, $\delta = 0.02$ mm

Equivalent area for AWG32 (diameter 0.2 mm)

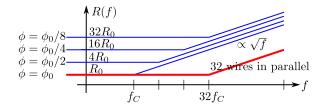
$$A_{eq} = \pi imes 0.2^2 - \pi imes (0.2 - 0.02)^2 = \pi imes 0.0076$$


Area at DC

$$A_{f=0} = \pi \times 0.2^2 = \pi \times 0.04$$


The resistance at 10 MHz is $\frac{0.04}{0.076} = 5.3$ times higher than at DC.

Frequency Response


- AC current tends to concentrate near the surface of the conductor
- Skin depth δ : equivalent thickness
- Equivalent tubular conductor at DC

One thick or several thin cables /1

One thick or several thin cables /1

- Litz Wire
- From the german: Litzendraht. Expensive. Weaving pattern
- Used for coils in the MHz range: Required values of L mean significant wire length
- AM radio
- Induction coils