Systems Engineering Electromagnetic Compatibility

Pere Palà

iTIC http://itic.cat

v1.0 May 2013

Source: A significant part is from Tim Williams' The Circuit Designer's Companion

Electromagnetic compatibility

- Electronic gadgets
 - Generate electromagnetic interference
 - Are susceptible to electromagnetic interference
- Acceptable levels of interference are getting lower
 - Solid-state more susceptible than vacuum-tube devices
 - Many devices in close distance
 - Plastic cases
- Military: high-power pulse equipment near sensitive devices in same vehicle
- ► Walkie-talkies, mobile phones, WiFi-enable devices

Importance of EMC

- Poor EMC performance when device is deployed becomes costly
 - Damaged Reputation
 - Difficult and expensive to repair
- EMC testing is important even if no legislation is available
- Device able to operate in hostile environment: immunity
- Device does not cause unreliable operation to others: emissions

Immunity / Emissions

Immunity

- Mains voltage drop-outs, dips, surges and distortion
- Transients and radio frequency interference (RFI) conducted into the equipment via the mains supply
- Radiated transient or RFI, picked up and conducted into the equipment via signal leads
- RFI picked up directly by the equipment circuitry
- Electrostatic discharge

Emissions

- mains distortion, transients or RFI generated within the equipment and conducted out via the mains supply
- transient or RFI, generated within the equipment and conducted out via signal leads
- RFI radiated directly from the equipment circuitry, enclosure and cables

Immunity: RF

- Electromagnetic environment very variable
- \blacktriangleright Fields dependent on the distance. $E\propto 1/d$ for $d>\lambda/2\pi$

$$E = \sqrt{30 \text{EIRP}}/d \tag{1}$$

- Radio transmitters.
 - > AM 100-500 kW. Far from equipment. $E \sim 1-10 \text{ V/m}$
 - FM, TV 10 kW. May be close to offices or industries.
 E ~1 V/m after building attenuation. Difficult to shield: λ is small
 - Walie-talkies, cellphones. Close to equipment. 1 W gives 5 V/m at 0.5 m distance
- Radars
 - ▶ 1–10 GHz, near airports. 50 V/m at 3 km
 - Pulses: hazardous for microprocessors
- ▶ 10 V/m immunity (or 3 V/m) from 10 MHz to 1 GHz

Immunity: Mains conducted transients

 Conducted transients: digital devices are more susceptible to them

Area	Transients/hour
Industrial	17.5
Business	2.8
Domestic	0.6
Laboratory	2.3

- Rate of rise, ~ \(\sqrt{V_{peak}}\).
 10 V/s for 2 kV pulses
- Microprocessor equipment: whithstand pulses up to 2 kV

Relative number of trasients vs. maximum transient amplitude Solid: mains lines (> 100 V) Dashed: telecomm lines (> 50 V)

Other conducted transients

- Telecommunications lines
- Lightning
 - 100 lightning strikes per second worldwide
- Automotive 12 V supply
 - Changes in alternator load
 - Switching of inductive loads

Electrostatic Discharge ESD

- Person charged to high potential
- Equivalent model: 150 pF in series with 150 Ω
- Fast pulses (sub-ns) of high current (10 A)
- Effects of ESD may be subtle or fatal

Emissions

Generated by switching transients

- Pulses at mains frequency
- Switching power supply
- Digital clock or data signals
 - ▶ Digital equipment with square wave clocks: noise up to 1 GHz
 - System clock frequency and harmonics: narrow spikes
 - Wideband noise from data
 - f < 30 MHz: conducted via mains leads
 - ► *F* > 30 MHz: radiated
- Regulations assume some separation between transmitter and receiver

The EMC directive

Essential requirements

The apparatus shall be so constructed that:

- Equipment shall not generate electromagnetic disturbances exceeding a level allowing radio and telecommunications equipment and other apparatus to operate as intended
- Equipment shall have an adequate level of intrinsic immunity from electromagnetic disturbances

Standards

- ► Comply with standards ⇒ comply essential requirements
- CENELEC : European standards body
- Most standards based on IEC

Conducted measurements

LISN: Line Stabilization Network

Figure 4.16 A 50Ω/50µH LISN as defined by standard CISPR16-1. This circuit provides a 50-Ω output impedance for measurement of RF emissions produced by the device under test. Conducted emission measurements are carried out from 150 kHz to 30 MHz.

Radiated measurements

Open Area Test Site or anechoic chamber

Measurement

- Quasi-Peak
- Average

Mains conducted limits

Radiated limits

Interference coupling mechanisms

Common and differential mode propagation

b) common mode

Design guidelines

- Shielding and filtering costs money
- Circuit design doesn't!
- Short tracks with nearby ground return or differential signaling

Digital

Use slowest logic family

- Use lowest clock frequency
- (Clock dithering)

Design guidelines 2

Analog

- Watch out for RF oscillations (or overshots)
- Minimise signal bandwidth. RC or ferrites
- High signal level
- Balanced signals
- Galvanic isolation
- Keep the circuit linear (avoid intermodulation distortion).
 Filtering cleans everything up

Design guidelines 3

Software

- Watchdog timer
- Check range of input data. Reject if outside valid range
- Oversample and average data
- Parity check
- Implement error detecting and/or correcting codes
- Rely on levels rather than on edges
- Re-initialise programmable peripherials: they will lose their configuration

Shielding

- Conductive surface around critical parts
- Atenuation by reflection and absortion
- ► All-metal (for low f) or only a conductive coating on plastic
- Typical shielding effectivity: 20–80 dB is average. > 120' dB is unachievable
- Perfect shield: seamles box of zero-resistance material with no apertures. The Faraday cage
- Practical shields
 - Are not made of perfect conductors
 - Have apertures

Shielding. Aluminium

Shielding. Steel

Apertures

- Practical shielding effectiveness is limited by apertures and discontinuities in shielding.
- Apertures: ventilation, indicators, …
- Leakage depends on the longest dimension d and the minimum wavelength λ. No shielding if λ < 2d

Seams

- Imperfect joints: distortion, painting, anodising, corrosion...
- Overlap: capacitor. Path for higher frequencies
- Place screws or rivets no farther than $\lambda/20$
- Conductive gasket: knitted wire mesh, conductive fabric over foam, ...

Beryllium copper fingers

Filtering

- Low-pass filters
 - Single inductor. Works well if Z_G and Z_L are low.
 - Single capacitor. Works well if Z_G and Z_L are high.
 - LC, CL, CLC... Analysed using conventional techniques. But: source and load impedances are not exactly known!
- Provide low-inductance ground path
- Ready-made mains filters

Cables and connectors

- Cable shield to minimize the creation of external fields
- Shield has to be properly terminated. 360° contact is desirable (such as in BNC).
- Screened connector shell

EMC checklist

Components

- use slow and/or high-immunity logic
- use good RF decoupling of power supplies
- minimise signal bandwidths with RC filtering, maximise levels
- use resistor buffering on long clock or data lines
- incorporate a watchdog circuit on every microprocessor

PCB layout

- keep interference paths segregated from sensitive circuits
- minimise ground inductance with an unbroken ground plane or ground grid
- minimise loop areas in high-current or sensitive circuits
- minimise track and component leadout lengths

EMC checklist 2

Cables

- avoid parallel runs of signal and power cables
- make sure that screens are 360 °bonded through properly designed connectors
- use twisted pair for high-speed data or high-current switching
- run internal cables away from apertures in shielded enclosures
- use multiple ground wires or planes in ribbon or flexi cables

Grounding

- ensure adequate bonding of screens, connectors, filters, cabinets etc.
- ensure that bonding methods will not deteriorate in adverse environments
- mask paint from any intended conductive areas
- keep earth straps short and wide: aim for a length/width ratio less than 3:1
- route conductors to avoid common ground impedances

EMC checklist 3

Filters

- apply a mains filter for both emissions and immuity: check required current rating
- use correct components and filter conf. for I/O lines
- ensure good interface ground return / each filter group
- ensure filter input and output terminal wiring is kept separate
- apply filtering to interference sources, such as switches or motors

Shielding

- determine the type and extent of shielding required from the frequency range of interest
- enclose particularly sensitive or noisy areas with extra internal shielding
- avoid large or resonant apertures in the shield, or take measures to mitigate them
- use conductive gaskets where long (> λ/20) gaps or seams are unavoidable