Linear Circuits and Systems

Essentials v1.0.

Pere Palà

September 2011

This document describes the essentials of the course Linear Circuits and Systems. Please do not use this instead of the recommended bibliography, but in addition to it!

1 Two-ports

Two-ports may be studied at any moment. Their inclusion at the beginning of this course is only to allow for sufficient advances in differential equations solution techniques, taught in Maths.

A two-port is a circuit with four terminals, as depicted in Fig. 1. This figure also emphasizes the port condition which requires that the current entering is always the current leaving each port.

1.1 Descriptions

A two-port is described by a set of two equations relating the four variables involved

$$
\begin{align*}
& f_{1}\left(V_{1}, V_{2}, I_{1}, I_{2}\right)=0 \tag{1}\\
& f_{2}\left(V_{1}, V_{2}, I_{1}, I_{2}\right)=0
\end{align*}
$$

There are six $\left(C_{2}^{4}\right)$ possibilities to choose two variables as the independent ones. Depending on which we choose, we get the following

Figura 1: A two-port with the associated variables.

Representation	Independent variables	Dependent variables
Current-controlled	I_{1}, I_{2}	V_{1}, V_{2}
Voltage-controlled	V_{1}, V_{2}	I_{1}, I_{2}
Hybrid 1	I_{1}, V_{2}	V_{1}, I_{2}
Hybrid 2	V_{1}, I_{2}	I_{1}, V_{2}
Transmission 1	V_{2}, I_{2}	V_{1}, I_{1}
Transmission 2	V_{1}, I_{1}	V_{2}, I_{2}

A two-port containing only linear elements and no independent sources is called a linear two-port. In a linear two-port, the six representations may be written as:

$$
\begin{gather*}
{\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] \text { or } \mathbf{V}=\mathbf{R I}} \tag{2}\\
{\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right] \text { or } \mathbf{I}=\mathbf{G V}} \tag{3}\\
{\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right] \text { or }\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\mathbf{H}\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right] \text { or }\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\mathbf{H}_{\mathbf{1}}\left[\begin{array}{c}
I_{1} \\
V_{2}
\end{array}\right]} \tag{4}\\
{\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
H_{11}^{\prime} & H_{12}^{\prime} \\
H_{21}^{\prime} & H_{22}^{\prime}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right] \text { or }\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]=\mathbf{H}^{\prime}\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right] \text { or }\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]=\mathbf{H}_{\mathbf{2}}\left[\begin{array}{c}
V_{1} \\
I_{2}
\end{array}\right]} \tag{5}\\
{\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right] \text { or }\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\mathbf{T}\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right] \text { or }\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\mathbf{T}_{\mathbf{1}}\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right]} \tag{6}\\
{\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right] \text { or }\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\mathbf{T}\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right] \text { or }\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\mathbf{T}_{\mathbf{1}}\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right]} \tag{7}
\end{gather*}
$$

Some comments are due regarding the representation chosen for the transmission parameters: The representations in equations (6) and (7) are the most widely used, but there are other alternatives. Note that $-I_{2}$ is chosen instead of I_{2}. Since I_{2} is the current entering the port through the " + " terminal, if follows that equations (6) and (7) relate the variables with the current leaving port 2 . This representation is advantageous when dealing with the so-called cascaded connection of two-ports

Figura 2: Equivalent circuit of a current-controlled representation.

1.2 Equivalent circuits

The set of equations (2) may be modeled as depicted in figure 2 .
A similar representation exists for the current-controlled expression, substituting the Thevenin form with a Norton form. The same idea may be used for finding an equivalent circuit described by the sets of equations (4) and (5).

A direct circuit equivalent for the transmission representations (6) and (7) requires the use of a nullator and a norator, two special one-ports which are seldom used.

1.3 Plotting and physical interpretation of the parameters

The two equations 1 are difficult to plot because of the number of variables involved. However, we may obtain useful plots if we keep one parameter constant.

Considering the Hybrid 1 representation in 5, we may, for instance, write the second equation explicitly:

$$
\begin{equation*}
I_{2}=H_{21} I_{1}+H_{22} V_{2} \tag{8}
\end{equation*}
$$

If we let $I_{1}=0$, then we may write

$$
\begin{equation*}
H_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}=0} \tag{9}
\end{equation*}
$$

This means that parameter H_{22} may be seen as the relation between I_{2} and V_{2} when port 1 is left open. Equation (8) clearly suggests that V_{2} is the stimulus and I_{2} the response, but for most practical two-ports there is no difference if the roles are changed. So, to measure $\mathrm{H}_{2} 2$ we might connect an ohmmeter to port 2 keeping port 1 open. The inverse of the resistance is directly $\mathrm{H}_{2} 2$.

If $I_{1}=0$, the two-port behaves as a conductance of value H_{22}. If we plot his equation, we get a straight line

$$
\begin{equation*}
y=m x+c \tag{10}
\end{equation*}
$$

with $m=H_{22}$ and $c=0$. Now, if $I_{1}=1$, we get a straight line with the same slope, i.e. $m=H_{22}$, and the y intercept point given by $c=H_{21}$. Repeating the process, we get a family of straight lines, parameterized by I_{1}.

Figures 3 and 4 show a graphical representation of a two-port described by

$$
\mathbf{H}=\left[\begin{array}{cc}
1 & -1 \tag{11}\\
2 & 1
\end{array}\right]
$$

Figura 3: Graphical representation of hybrid 1 parameters. Input port.

Figura 4: Graphical representation of hybrid 2 parameters. Output port.

